
Modelling and model-checking a ROS2
multi-robots system using Timed

Rebeca
Presenter: Hiep Hong Trinh

PhD student, hiep.hong.trinh@mdu.se
Date: January 18th, 2024

mailto:hiep.hong.trinh@mdu.se

Appetizer: Rebeca model checker

2

Appetizer: ROS2 simulation with 5 robots

3

Robotics domain

• Robotic applications:
• Complex in structure, complicated in behaviors
• Mathematical models

• shape transformation, motion, dynamics
• Sophisticated algorithms

• Optimization, searching, recognition …
• Interactions with environment

• map, static and mobile obstacles, sensors, actuators
• Autonomy:

• human-like in sensing, thinking, making decisions, learning
• Challenges to modelling and model-checking:

• Complexity in data structures, communications and algorithms
• Heavy computation amount
• Lack of domain knowledge à toy problems

4

Component-based modelling & dev.

• [David G.]: “CPS ecosystems. There are several ecosystems of reusable building blocks in CPS. For
example, the robotics operating system (ROS) is widely used in robotics applications, and it
provides extensive libraries of components for assembling systems. This presents a challenge and
an opportunity for projects such as SACSys. It is a challenge, because real systems of the future
will not be built from scratch – but largely created through component composition … This means
that it should be possible to gain huge leverage by specifying just those core components, and
providing guidance on how to use them correctly.“

• à Reusable components and templates from this work, later explained.

• à Ground-breaking work, first step

5

ROS2 architecture – node topography

6

Ø Nodes: parallel
processing units

Ø Keep running, wait
for incoming events,
respond & send
outputs

Ø Asynchronous
interactions: topics,
services, actions

Timed Rebeca
• Actor-based model

• architectural modelling (entities and links)

• Concurrent, reactive systems (rebecs)
• Message-based async. Interactions (msgsvr)

• Timing semantics à timed loops, exec. time,
time limits
• after(time_taken or period),
deadline(max_age)

• Plus: developer-friendly syntax & flow, IDE

7

The flow
• Select a robotic problem
• Design architecture in ROS2 node

topography
• Model in Rebeca, make it pass basic positive

tests
• Develop corresponding ROS2 code

• Modify code to smooth robotic behaviours
• Revise model to match with code evolution

• Check program-model synchronization
(match test)

8

Industrial robotic problem: multiple AMRs

• Can project onto a 2D Cartesian à dimension reduction
• A mobile robot is equal to a mobile obstacle
• Multi robots à more complexity, not less
• Typical problems:

• Detecting obstacles (static & mobile)
• Avoiding collisions
• Resolving congestions
• Planning & replanning paths

• Properties to verify:
• Deadlock freedom
• Collision freedom
• Target reachability

9

Basic blocks of AMRs problem

10

Mobile robot

Floor map
(.PGM)

Robot
structure
(URDF)

Launch
profiles

(Python)

Node code
(C++)

Laser range
detection Path finder Map server

Robot
r1

Robot
r2 Robot

r3

Robot
r4

Robot
r5

Results: working & non-working

11

Results – a working case

12

Results – a non-working case

13

Results: artifacts

Rebeca model for prototyping
(version 1)

ROS2 demo code Rebeca model for verifying
(version 2) à model-based
verification
1 program – N models

Coverage: all components of
AMRs problem

Mapping

Laser-based obstacle detection

Robot physical dimensions

Robot movement characteristics
(rotation & linear, speeds, stopping
distance)

Dynamic path planning

Human-like collision avoidance &
congestion resolution

14

Model-based development
Framework for multi robots
systems

Challenges
• Discrete model vs. continuous behaviours

• Discrete state variables vs. real variables (e.g.
map data, coordinates, angles)

• Not a simple 1-1 conversion: retain too much à
impossible model checking, drop too much à
information loss, inaccuracy

• Heavy computation
• Exponentially multiplied in model checking
• Complicated math calculations vs. inequivalent

programming facilities in a modelling language

15

The Bad

• Detail level:
• Real > Simulation > Model (for model checking)
• For simulation: more is better
• For modelling: less is better

• Reality gap: continuous system vs. discrete model
• Real measurements vs. discrete state variables
• Incremental, gradual vs. abrupt behaviors
• Rounding = info. loss. How to sample?

àDiscretization strategies
• Robotic complexity:

• Mapping, sensory data, robot physical structure,
• Path finding, kinematics (motion science)

à Simplification strategy (component-wise, retaining system integrity)

16

The Bad & counter-tactics

• Discretize:
• 2D projection à occupancy grid, footprints/shadows
• Robot directions: 8 angles
• Scan step = 2o à known beam angles 0..360
• Fine-grained level vs. accuracy

• Simplify:
• Map size & resolution: 50x50
• Robot structure: box-bot, one frame

Ø Just some extra work to de-simplify

17

The Ugly - inconveniences

• Inequivalence of programming facilities in Rebeca
• Not OOP, no inheritance
• Only state variables, no local variables to each rebec
• No struct, no string types
• Fixed sized arrays: int[100] a;
• Uninterpreted calls to common math functions:

sqrt(), cos(), sin(), tan(), atan(), …
• Debugging, visualizing limitations

18

The Ugly & counter-tactics

• Helper script (PHP): extract & generate data, debug modelling code,
visualize states
• Known angles 0. . 360à precompute all trigonometric values
• No more sin(), cos(), tan() !
• Rule “Don’t repeat yourself” à do once, reuse later

• Sqrt() in 𝐸𝑢𝑐𝑙𝑖𝑑𝑒 distance
• Use a different heuristic without 𝑠𝑞𝑟𝑡() – Octile distance, Manhattan distance
• Square it: 2 = 2 ∗ 2
• Workarounds

19

Conclusion

• Two-fold or multiple-fold:
• Model-based development and verification of ROS2 robotic systems using

T.Rebeca
• Rebeca model template & ROS2 code framework for AMRs
• Human-like collision avoidance & congestion resolution algorithms
• Exploratory method, modelling/dev. process, modelling techniques

20

Results – collision & congestion handling

21

