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Abstract
The combination of physical assets with cyber computational entities, known as Cyber-Physical Systems 
(CPS), is becoming more common. These systems are used in various sectors such as manufacturing, 
energy production, and transportation. However, they may contain vulnerabilities that can be exploited 
and compromise the proper functioning of the systems. Formal methods can provide confidence in the 
correctness of the system. These methods can help system designers to discover vulnerabilities and 
ensure the system meets its intended behavior and properties.

This thesis presents a framework called CRYSTAL for analyzing the security of CPS both at the design 
and runtime with the following contributions: 1) We build a Timed Rebeca model augmented with attack 
scenarios to identify potential vulnerabilities during the design phase. We identify CPS-related attacks 
reported in the literature and use STRIDE threat modeling as a guideline to put them into two categories: 
attacks on communication and attacks on components. We augment our model with actors representing 
attackers that jeopardize the communication and compromised components with possible malfunctions. 
Subsequently, we analyze the security of the CPS design (i.e., a model augmented with attacks) using 
model checking and identifying the trace of events leading to a security failure (i.e., counterexamples). 2) 
We propose a model-based methodology for detecting attacks at runtime. We develop a monitor and an 
algorithm that checks whether the behavior of the system at runtime is consistent with a reference model. 
We call the reference model as Tiny Digital Twin and it is employed within the monitor. We create Tiny 
Digital Twin by automatically reducing the state space of the Timed Rebeca model while preserving 
the trace equivalence. 3) We provide a formal foundation for our abstraction method and present a 
theory to map the state space of a Timed Rebeca model into a Labeled Transition System (LTS). This is 
achieved by defining a Concise Rebeca Timed Transition System (CRTTS) and implementing a function 
to convert CRTTS into an LTS. We use mCRL2 ltsconvert tool to abstract away non-observable actions 
from LTS while preserving trace equivalence between the original model and its abstracted version. 4) 
To validate the effectiveness of our attack detection method we simulate various attacks. Subsequently, 
we systematically model and check complex coordinated attacks. The applicability of CRYSTAL is 
demonstrated in revealing malicious behavior within different case studies including Pneumatic Control 
System (PCS), Temperature Control System (TCS), and Secure Water Treatment System (SWaT).
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Abstract

The combination of physical assets with cyber computational entities, known
as Cyber-Physical Systems (CPS), is becoming more common. These
systems are used in various sectors such as manufacturing, water supply
systems, energy production, and transportation. However, they may contain
vulnerabilities that can be exploited and compromise the proper functioning of
the systems. The vulnerabilities can result from the lack of security measures in
the design of the system as well as the use of insecure communication channels
between the cyber and physical components. Formal methods can provide
confidence in the correctness of the system. These methods can help system
designers to discover vulnerabilities and ensure the system meets its intended
behavior and properties.

This thesis presents a framework called CRYSTAL for analyzing the
security of CPS both at the design and runtime with the following
contributions: 1) We build a Timed Rebeca model augmented with attack
scenarios to identify potential vulnerabilities during the design phase. We
identify CPS-related attacks reported in the literature and use STRIDE
threat modeling as a guideline to put them into two categories: attacks on
communication and attacks on components. We augment our model with actors
representing attackers that jeopardize the communication and compromised
components with possible malfunctions. Subsequently, we analyze the security
of the CPS design (i.e., a model augmented with attacks) using model checking
and identifying the trace of events leading to a security failure (i.e., counter-
examples). 2) We propose a model-based methodology for detecting attacks
at runtime. We develop a monitor and an algorithm that checks whether the
behavior of the system at runtime is consistent with a reference model. We
call the reference model as Tiny Digital Twin and it is employed within the
monitor. We create Tiny Digital Twin by automatically reducing the state
space of the Timed Rebeca model while preserving the trace equivalence.
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ii

3) We provide a formal foundation for our abstraction and present a theory
to map the state space of a Timed Rebeca model into a Labeled Transition
System (LTS). This is achieved by defining a Concise Rebeca Timed Transition
System (CRTTS) and implementing a function to convert CRTTS into an
LTS. We use mCRL2 ltsconvert tool to abstract away non-observable actions
from LTS while preserving trace equivalence between the original model
and its abstracted version. 4) To validate the effectiveness of our attack
detection method we simulate various attacks. We systematically model
and check complex coordinated attacks. The applicability of CRYSTAL is
demonstrated in revealing malicious behavior within different case studies
including Pneumatic Control System (PCS), Temperature Control System
(TCS), and Secure Water Treatment System (SWaT).
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Sammanfattning

Kombinationen av fysiska tillgångar med cyberberäkningsenheter, kända som
Cyber-Physical Systems (CPS), blir allt vanligare. Dessa system används inom
olika sektorer såsom tillverkning, vattenförsörjningssystem, energiproduktion
och transport. Dock kan de innehålla sårbarheter som kan utnyttjas
och kompromettera systemens korrekta funktion.Sårbarheterna kan bero på
bristande säkerhetsåtgärder i systemets design samt användningen av osäkra
kommunikationskanaler mellan cyber- och fysiska komponenter. Formella
metoder kan ge förtroende för systemets korrekthet. Dessa metoder kan hjälpa
systemdesigners att upptäcka sårbarheter och säkerställa att systemet uppfyller
sitt avsedda beteende och egenskaper.Denna avhandling presenterar en ram
kallad CRYSTAL för att analysera säkerheten hos CPS både i design- och
driftfaserna. Våra bidrag är följande: a) Vi bygger en Timed Rebeca-modell
förstärkt med attackscenarier för att identifiera potentiella sårbarheter under
designfasen. Vi identifierar först CPS-relaterade attacker som rapporterats
i litteraturen och använder STRIDE-hotmodellering som riktlinje för att
kategorisera dem i två kategorier: attacker på kommunikation och attacker
på komponenter. Sedan använder vi Timed Rebeca-modellspråket för att
modellera en aktör som en angripare som äventyrar kommunikationen och
en aktör som en komprometterad komponent med möjliga fel. Därefter
analyserar vi säkerheten hos CPS-designen (en modell förstärkt med attacker)
genom modellkontroll och identifierar spåret av händelser som leder till
ett säkerhetsfel (kontra-exempel). b) Vi föreslår en modellbaserad metodik
för att upptäcka attacker vid drifttid. Inledningsvis minskar vi automatiskt
tillståndsutrymmet för en Timed Rebeca-modell och skapar en abstrakt modell
kallad Tiny Digital Twin. Vi bevarar spår-ekvivalensen mellan det ursprungliga
tillståndsutrymmet och dess abstrakta version. Därefter utvecklar vi en
övervakningsalgoritm implementerad i en modul som använder Tiny Digital
Twin för att kontrollera om systemets beteende vid drifttid är konsistent med
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iv

modellen. Övervakaren producerar ett larm när en inkonsekvens upptäcks. c)
Vi tillhandahåller en formell grund för vår metodik och presenterar en teori för
att kartlägga tillståndsutrymmet för en Timed Rebeca-modell till ett Labeled
Transition System (LTS). Detta uppnås genom att definiera ett Concise Rebeca
Timed Transition System (CRTTS) och implementera en ltscast-funktion för
att konvertera CRTTS till ett LTS. Vi använder mCRL2 ltsconvert-verktyget
för att abstrahera bort icke-observerbara handlingar från LTS samtidigt som
vi bevarar spår-ekvivalensen mellan den ursprungliga modellen och dess
abstrakta version. d) För att validera effektiviteten hos vår metod för att
upptäcka attacker simulerar vi olika attacker. Vi modellerar systematiskt
och kontrollerar komplexa koordinerade attacker. CRYSTAL:s tillämplighet
demonstreras genom att avslöja skadligt beteende inom olika fallstudier,
inklusive Pneumatisk Kontrollsystem (PCS), Temperaturkontrollsystem (TCS)
och Säkert Vattenbehandlingssystem (SWaT).
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Chapter 1

Introduction

The security of sophisticated industrial systems is becoming increasingly
important due to the demand for adaptation in response to unexpected security
problems. Cybersecurity concerns are remarkable for large companies in a
variety of sectors, such as water treatment systems, transport, electrical grid
operations, and smart machines [1, 2, 3]. Many systems are no longer
closed and involve cyber and physical systems that work together to achieve
a common goal. Despite the advantages of combining cyber and physical
components, the openness of some parts of the system makes the whole
system exposed to several attacks, which may disrupt the desirable behavior
of the system. For example, as reported by Kaspersky ICS CERT [4],
some parts of the production line of Japanese Optics manufacturer HOYA
in Thailand was crashed by a Malware [5]. Once the malware could spread
over a hundred of the company’s computers, it stole user credentials and
distributed a cryptocurrency miner. The incident also affected computers at
HOYA’s headquarters in Japan that were connected to the network, disrupting
the invoice issue process. Although the company was able to stop the
cryptocurrency mining operation, the incident had a substantial impact on the
performance of the production management process.

As another example, the attack was launched on the US power facility in
March 2019 which caused an interruption in the electrical grid operation [6].
According to the report by North American Electric Reliability Corporation
(NERC) [7], the firewall in the network was compromised by an anonymous
remote entity. The attackers exploited a known vulnerability in the device
which caused the firewall reboots itself in a repetitive manner. During each
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4 Chapter 1. Introduction

reboot, the firewall was out of service for about 5 minutes. The direct impact of
the attack was communication outages between the control center and devices.

Motivation. To tackle CPS attacks, it is required to consider the
security of cyber-physical systems beyond the IT systems standard information
security [8, 9]. This issue is more highlighted when utilizing cyber-
physical systems in different significant sectors like manufacturing or critical
infrastructures, creating a need for efficiently handling relevant security issues.

Security assurance is a non-stop process. Companies need to continually
assess their cybersecurity posture to ensure they are up to date with the
latest security measures. We need to prepare our organizations and industrial
companies by using proper tools, solutions and methodologies, both at the
design phase and the operational phase of the system, and provide well-
formed adaptation strategies to withstand failures. Formal methods provide an
approach to verifying software systems, which can be particularly useful in the
field of cybersecurity [10]. By using formal methods, one can create a precise
mathematical model of the system at design time, which can be used to identify
potential vulnerabilities, detect and diagnose flaws and errors, and verify that
the system is secure and will behave as intended. Runtime verification and
monitoring can also be used for resilience against cyberattacks by preventing
and detecting cyberattacks and therefore can help in improving reaction time,
reducing downtime, and ultimately saving money in the case of an attack.

CRYSTAL Framework. In this thesis, we present a framework called
CRYSTAL to enhance the security of Cyber-Physical Systems (CPS) by
detecting disturbances in the system behavior and thus protecting the system
against attacks. The development of the CRYSTAL framework is organized as
a long-term plan (starting from the research plan at the beginning of the study
and ending with the Ph.D. thesis). Therefore, based on the defined goals for
the Ph.D. study, we have developed different methods and concepts behind the
main idea for the Ph.D. thesis.

The CRYSTAL framework is designed for building safe and secure cyber-
physical systems by providing a set of methods and tools for modeling the
system, defining attack models, abstracting the model and creating Tiny Digital
Twin, and finally developing a monitor to detect cyberattacks. The Tiny Digital
Twin is constructed at the design phase and is used for monitoring at the
operational phase to ensure that the system is functioning as intended. The
architecture of the CRYSTAL is inspired by the MAPE-K 1 feedback loop

1The acronym MAPE-K stands for Monitor, Analyze, Plan, Execute, plus Knowledge.
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5

model [11] where we have components to monitor the system, analyze the
behavior of the system, plan accordingly, and actuate necessary actions. As
shown in Figure 1.1, three stages are defined and developed in the CRYSTAL
framework.

Mapping Rebeca
to LF

Modeling and
code generation 

Model Checking
(Afra)

ltscast tool

Properties in LTL,TCTL
or Assertions

State Space
(attack free)

Design-time security
analysis 

ltsconvert
tool

Input of
mCRL2

Runtime monitoring

Sensors

Physical Process

Monitor
(in LF)

Tiny Digital Twin

Sensor data

Commands

Commands

Actuators

Controllers
Sensor data

Tiny Digital Twin

Timed Rebeca model
augmented with attacks

Timed Rebeca
model

LF executable code
(used for simulation)

Counter-examples
(successful attacks)

Case Studies
Pneumatic Control System (PCS), Temperature Control System (TCS), and Secure Water Treatment System (SWaT)

stage_1 stage_2 stage_3

Figure 1.1: Three stages in developing the CRYSTAL framework

Stage 1: Modeling and Code Generation. We use Timed Rebeca as an
actor-based modeling language supported by a model checking tool [12, 13,
14] to model the behavior of the cyber-physical systems. We present the
components of cyber-physical systems as actors in Timed Rebeca, and define
interactions between the components as messages passed between the actors
(as shown in Figure 1.2, in a CPS application, controllers, sensors, actuators,
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6 Chapter 1. Introduction

of attacks. Three schemes are defined for modeling attacks. In Scheme-A,
the attacker injects malicious data into the communication channel between a
sensor and the controller. In Scheme-B, the attacker compromises controllers,
and in Scheme-C, there is an attack that is performed in a coordinated way [19].

Sensors

Physical Process

Commands

Actuators

Controllers
Sensor data

Inject malicious
msg

Sensors

Physical Process

Commands

Actuators

Controllers
Sensor data

Compromise
components

Sensors

Physical Process

Commands

Actuators

Controllers
Sensor data

Inject malicious
msg

Compromise
components

Scheme-A Scheme-B Scheme-C

Figure 1.2: The controllers, sensors, actuators, and physical processes are defined as actors in
Timed Rebeca model. Scheme-A, Scheme-B, and Scheme-C in Timed Rebeca model are used
for security analysis of CPS applications (adapted from [19]). The red circles show attacks on
communication and the blue diamonds indicate attacks on components.

We write the correctness properties from system security requirements and
feed the Timed Rebeca model augmented with attacks and the property file
to the Rebeca model checking tool (Afra) [12, 13, 14] in order to evaluate the
system tolerance against the attacks. We check the counter-examples generated
by Afra to identify the trace of events leading to a failure.

To build the Tiny Digital Twin, the state space is generated where the
attacks are not activated in the Timed Rebeca model. We use our ltscast
tool [20] to map the state space to the input format of ltsconvert tool of
mCRL2 [21]. Then, the Tiny Digital Twin is built using ltsconvert tool.

Transitions in the state space may be labeled with actions that are not
visible to the monitor (and the controller). These actions are typically called
non-observable actions. Therefore, these transitions are abstracted away in
the Tiny Digital Twin. If we do not abstract the non-observable actions, the
monitoring process may become complex and time-consuming. This is due
to the fact that the monitor would need to perform a look-ahead search on
multiple branches, which can slow down the monitoring process. In general,
the continuous behavior of physical components is expressed using differential
equations like in Hybrid Automata [22]. In our approach, we abstract the
continuous behavior and only model the discrete jump transitions among the
states (states are called control modes in hybrid automata). We model the
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7

progress of time in each state in Timed Rebeca.
We focus on the software aspect of cyber-physical systems while

maintaining an abstract model of the physical world (i.e., Tiny Digital Twin).
The model of the physical world is abstract, with particular attention to its
interface to the software. Including all details of the dynamics of the system
is not necessary for our purpose. For example, in one of our case study
(Temperature Control System), we simplify the heating and cooling dynamics
by considering the average temperature rate instead of modeling heating and
cooling in detail.

Stage 3: Runtime Monitoring. In the third stage, the monitor (implemented
in LF) uses the Tiny Digital Twin of the system to detect cyberattacks at
runtime [23]. During operational phase of the system, the Tiny Digital Twin
is used within a monitor to detect cyberattacks on sensor data and control
commands, and identify compromised components such as controllers. The
monitor is strategically positioned between the control part and the sensor and
actuator components in CPS applications. It observes the visible inputs and
outputs of the controllers, traverses state transitions in the Tiny Digital Twin,
and detects any misbehavior occurring during system operation. To protect
the system against attacks and prevent damage, the monitor drops control
commands that are not consistent with the state transitions in the Tiny Digital
Twin. Using the Tiny Digital Twin, and the knowledge of the correct and secure
functionality of the system, enables the monitor to validate the sequence of
actions and the completion time of processes. The monitor is developed using
LF language and has the same functionality in different CPS applications. It
adjusts the input/output ports based on the number of sensors and actuators of
the system.

We demonstrate the details of the methodology to detect attacks using
Pneumatic Control System (PCS), Temperature Control System (TCS), and
Secure Water Treatment System (SWaT) [23, 20, 24]. The PCS and SWaT
systems are distributed control systems whereas TCS is a centralized control
system. Aligning logical and physical time, enables us to perform the
monitoring at runtime. Relying only on the logical times defined in the model
is not a realistic assumption at runtime. We model both periodic and trigger
sensors, which are two different types of sensors used in PCS and TCS. The use
of different sensor types in PCS and TCS systems highlights the importance of
adapting the modeling approach to the specific characteristics of each system.
We show how we can model the impact of the environment on the TCS system
functionality by using nondeterministic assignment for state variables. We
highlight the multiple incoming connections and the utilization of priorities
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8 Chapter 1. Introduction

for events during the development of the SWaT case study in LF.
An Example Using CRYSTAL 2 Here, the details of each stage of the

CRYSTAL framework are explained in a simplified version of a Pneumatic
Control System (PCS) [24]. Figure 1.3 illustrates the control system where it
regulates the movement of two cylinders in multiple directions. Each cylinder
is controlled by a dedicated controller to regulate the movement in either
left-right or up-down directions. The desired sequence of movements of the
cylinders is as follows: (1) CylinderB moves down (picks up a particle), (2)
CylinderB moves up, (3) CylinderA moves right (pushes CylinderB to the
right), (4) CylinderB moves down (leaves the particle) and (5) CylinderB
moves up, (6) CylinderA moves left. We assume that ControllerA starts its
linear motion from the left at the top of location X.

C
ylinder B

Cylinder A

C
ylinder B

Controller
A

Controller
B

Location X Location Y

1

2

3

6

4

5

Figure 1.3: PCS with two cylinders (adapted from [25]). The cylinders work together to pick up a
particle from location X and move it to location Y.

Timed Rebeca model and LF code. We model the PCS example in Timed
Rebeca as depicted in Listing 1. Each component of the system, plus an
attacker, is modeled as a reactive class in Timed Rebeca. The reactive
class attacker models performing injection on communication channels in the
system (line 36). The controllers also receive the information about the other
cylinder movements using the message server getctl (line 16). The controllers
decide whether to move the cylinder based on the current status and desired
movement (lines 5 to 15). The controllers send the motion commands 1 or -1
to regulate the movements (lines 10 and 15). The sensors in this system are
the trigger sensors and simply serve as intermediaries between the cylinders

2The detailed description of the example is presented in Paper E [24]. In this section, we use
a simplified version of PCS to help explain our methodology.
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and controllers, reporting location information (line 18) when cylinders touch
initial location or target location. The time of the movement for each cylinder
is modeled using after primitive (line 30).

We use the mapping between Timed Rebeca and Lingua Franca presented
in [15] and write a LF code (target c++ language) for the PCS example. The
code is presented in Listing 2. To simulate the attacks, we modify the reactions
in the reactors. This way, the reactors behave as compromised components
and respectively send false sensor data and faulty control commands on the
output ports. In addition, the reactor attacker is defined to inject false messages
into the channel between the controllers. We can execute the LF compiler and
generate an executable file.

Attack models and safety properties. The Timed Rebeca model of the
system is augmented with different types of attacks that can be launched to test
the resilience of the system. The attack scenarios that are modeled in this case
include compromised sensors, compromised cylinders, and injection attacks
on the communication channels between controllers as shown in Figure 1.4.
In addition, the combined attacks are performed by involving injection attack
with the compromised version of sensors and cylinders to perform complex
coordinated attacks.
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actuate(1 or -1)

getctl(0 or -2)

getsense(0 or 2) actuate(1 or -1) getsense(0 or -2)

chlAB

chlBA

Figure 1.4: The messages are transmitted between controllers in order to regulate the movements.
The possible attack points for performing attack scenarios are depicted with red circles and blue
diamonds to show attacks on communications or components, respectively.

In order to test for possible complex attack scenarios, we must generate
combinations of different values for both the input parameters of the attacker
and the compromised components, and verify the model for each combination.
To automate this process, we develop a Python script for generating input
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10 Chapter 1. Introduction

1 //env variables ...
2 reactiveclass ControllerA(5){ ...
3 //locBisUP:true means that CylinderB is up
4 msgsrv getsense(int locA) {
5 if(locBisUP) {
6 if(locAisLeft) {
7 if(locA == cylinderAEndloc) {
8 cntlB.getctl(locA); locAisLeft = false;
9 locBisUP = false;

10 } else { cylA.actuate(1);}
11 } else if (!locAisLeft) {
12 if(locA == 0) {
13 cntlB.getctl(locA); locAisLeft = true;
14 locBisUP = false;
15 } else { cylA.actuate(-1); } } } }
16 msgsrv getctl(int locB){ if (locB == 0) { locBisUP = true; }}
17 }
18 reactiveclass SensorA(5){ ...
19 msgsrv getloc(int loc) { ControllerA.getsense(loc);}
20 }
21 reactiveclass CylinderA(5){...
22 CylinderA(boolean compromised, int compTime, int msg){
23 loc = 0; motion = 0; self.status();
24 if (compromised) {
25 self.actuate(msg) after(compTime); }}
26 // left to right on x-axis
27 msgsrv status() { loc = loc + motion;
28 if(loc == 0 || loc == cylinderAEndloc){
29 SensorA.getloc(loc); motion = 0; }
30 self.status() after(2); }
31 msgsrv actuate(int rate) { motion = rate;}
32 }
33 reactiveclass ControllerB(5){...}
34 reactiveclass SensorB(5){...}
35 reactiveclass CylinderB(5){...}
36 reactiveclass Attacker(3){
37 //injects false messages in channels between controllers
38 knownrebecs{ ControllerA cntlA; ControllerB cntlB;}
39 Attacker(boolean inj, int channel, int msg, int attktime) {
40 if(inj){ if (channel == 1) { self.chlBA(msg, attktime);}
41 if (channel == 2) { self.chlAB(msg, attktime); }}}
42 msgsrv chlBA(int msg, int attktime){
43 cntlA.getctl(msg) after(attktime); }
44 msgsrv chlAB(int msg, int attktime){
45 cntlB.getctl(msg) after(attktime); }
46 }
47 main{
48 CylinderA cylA(SensorA):(cAComp,cAComp_time,cAmalMsg);
49 ControllerA ControllerA(cylA, ControllerB):();
50 SensorA SensorA(ControllerA):(sAComp,sAComp_time,sAmalMsg);
51 ... // ControllerB and SensorB instances
52 Attacker attacker(ControllerA, ControllerB):
53 (inj_attk, chl, malMsg, attTime);}

Listing 1: A part of the Timed Rebeca model augmented with attacks for the PCS example.
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1 target Cpp {fast: false, threads: 1};
2 //loads Tiny Digital Twin
3 import Monitor.lf;
4 reactor ControllerA { ...
5 if (locBisUP) {
6 if (locAisLeft) {
7 if(*getctl.get() == 2){ getctlB.set(*getctl.get());
8 locAisLeft = false; locBisUP = false; }
9 else { actuate.set(1); }

10 } else if (!locAisLeft) {
11 if(*getctl.get() == 0){
12 getctlB.set(*getctl.get());
13 locAisLeft = true; locBisUP = false;
14 } else { actuate.set(-1); } } } =}
15 reaction(getctl) {=
16 if (*getctl.get() == 0) { locBisUP = true; } =}
17 }
18 reactor SensorA {...
19 if(compromised && elapsed_secs
20 == std::chrono::seconds(compTime)){
21 out.set(msg);
22 } else { out.set(sensedValue.get()); }
23 =}
24 }
25 reactor CylinderA {...
26 if(compromised && elapsed_secs
27 == std::chrono::seconds(compTime))
28 { motion = msg;
29 } else { motion = *actuate.get(); }
30 =}
31 timer status(0, 2 sec);
32 reaction(status) -> getloc {=
33 loc = loc + motion;
34 if(loc == 0 || loc == 2){ getloc.set(loc); motion = 0; } =}
35 }
36 reactor ControllerB { ... }
37 reactor SensorB { ... }
38 reactor CylinderB { ... }
39 reactor Attacker { ... } //injections
40 main reactor PCS {
41 ...
42 ControllerA = new ControllerA();
43 cylA.getloc -> SensorA.sensedValue;
44 SensorA.out -> Monitor.getsenseA after 1 sec;
45 ControllerA.actuate -> Monitor.actuateA;
46 Monitor.cmd_actuateA -> cylA.actuate;
47 Attacker.getctlA -> ControllerA.getctl;
48 }

Listing 2: A part of LF code for the PCS example.
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12 Chapter 1. Introduction

values and collecting verification results. This approach is similar in nature
to the automated verification technique that uses symbolic modeling and
constraint solving. The complete model of the system and the written python
codes are available on GitHub [26].

We define safety properties to catch unsafe and undesirable movements
of the cylinders. To specify the properties, we use assertions. The Timed
Rebeca model for the PCS satisfies all the properties in Table 1.1, when none
of the attacks are activated. If the model checker detects that a safety property
is not satisfied (when the compromised components or injection attacks are
activated), it provides the modeler with a counter-example that outlines the
sequence of events leading to the violation. This sequence of events can be
used to determine the steps of the successful attack scenario.

Table 1.1: The counter-examples for safety properties

# safety property counter-example

1 !((motionR&&motionU)||(motionL&&motionD)) S67
controllerb.getsense[0]−−−−−−−−−−−−−−−→ S65,...,S70

cyla.actuate[1]−−−−−−−−−→ S83

2 !(locXa outRange||locXb outRange) S67
controllerb.getsense[0]−−−−−−−−−−−−−−−→ S65,...,S74

controllera.getsense[2]−−−−−−−−−−−−−−−→ S84

cyla: CylinderA, cylb: CylinderB, actuate[1]: moves right/down, actuate[-1]: moves left/up

Table 1.1 shows the safety properties along with two example counter-
examples. The properties are defined using the values of the variables loc and
motion for two cylinders in the PCS Timed Rebeca model. Property #1 ensures
that both cylinders do not move diagonally. In this system, CylinderB cannot
move up (motionU) or down (motionD) while CylinderA is moving to the right
(motionR) or left (motionL). Property #2 ensures that both CylinderA and
CylinderB only have motion between the initial position and the end position
in locations X or Y. We checked 3037 attack scenarios on the Timed Rebeca
model of PCS (i.e., using Afra model checker) and we found 383 cases where
attacks violated safety properties.

Tiny Digital Twin. We create the Tiny Digital Twin for the PCS by
providing the ltsconvert [21] tool with a list of labels that denote the
silent transitions (non-observable actions or tau transitions). Therefore, we
developed a tool, ltscast, to map the state space created by Afra into the
input format of the mCRL2 ltsconvert tool. We create the Tiny Digital
Twin by abstracting away non-observable actions while preserving trace
equivalence [20]. In PCS, the actions getsense, actuate and getctl are
observable in the system behavior from the controller point of view, while
actions status and getloc are non-observable. The resulting abstract model
has 87 states and 120 transitions, while the original state space has 276 states
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13

and 439 transitions.
Monitoring and attack detection. We implement the monitor as a reactor in

LF (i.e., Monitor.lf) (in Listing 2 line 2). The reactor Monitor is imported to
the LF code. The reactor Monitor contains two reactions, one for loading Tiny
Digital Twin and another for comparing input data with the transitions in the
model.

We consider those compromised components and injection attacks that
successfully violate the safety properties at design-time in evaluating the
detection capability of the monitor at runtime. In our experiments, we simulate
383 attack scenarios. The scenarios are 355 false sensor data and faulty
actuation, 28 injection attacks by defining an attacker, and 281 combined
attacks where the injection attacks are combined with sensor data and faulty
commands.
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Figure 1.5: The violation of property #1 (a) and property #2 (b) are shown on a subset of the state
transitions in the Tiny Digital Twin for the PCS system.

In the counter-example for property #1 (see Table 1.1), as shown in the state
transitions in Figure 1.5(a), in state S67, controllerA and controllerB receive
the location information of the cylinders through sensor data, i.e., controllerb.
getsense[0] and controllera.getsense[0] (state S67 to state S70). At state S70,
according to the outgoing transition, the intended action is cylb.actuate[−1]
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14 Chapter 1. Introduction

that actuates CylinderB to move downward and pick up the particle. However,
at the current state, the action cyla.actuate[1] is transmitted by controllerA to
move CylinderA to the right (see the dotted red outgoing transition from S70
to S83). The monitor detects a deviation at state S70 and consequently drops
the action cyla.actuate[1]. According to the transition controllera.getsense[0]
from S65 to S70, the monitor module keeps state S70 as the current state and
proceeds with the system execution.

In the counter-example for property #2, controllerA receives sensor data
controllera.getsense[2] at state S74 as shown in Figure 1.5(b). At state S74,
CylinderB has been moved down and the location information is transmitted to
the controllerB through sensor data controllerb.getsense[−2]. However, at the
current state, state S74, incorrect sensor data is injected into the system. The
monitor detects the deviation and drops the sensor data controllera.getsense[2].
In this case, the incorrect sensor data can be injected either by an attacker
or by a compromised sensor. The monitor (when incorrect sensor data is
dropped) proceeds and checks the status of the system execution. This failure
can be recovered using a redundant sensor if the original sensor has been
compromised.

1.1 Thesis Overview

This thesis is divided into two parts. The first part is a summary of our research,
including the background concepts that are used in the thesis (Chapter 2), the
problem formulation and our research goals (Chapter 3), the research methods
applied in this thesis (Chapter 4), a brief overview of our contributions (Chapter
5), a discussion on the related work (Chapter 6), as well as future work (Chapter
7). The second part is a collection of papers included in this thesis, listed as
follows:

Paper A: On-off attack on a blockchain-based IoT system, Fereidoun Moradi,
Ali Sedaghatbaf, Sara Abbaspour Asadollah, Aida Čaušević, and Marjan
Sirjani. The 24th IEEE Emerging Technologies and Factory Automation
(ETFA 2019), First Workshop on Secure and Trustable Wirelessly Connected
Industrial IoT, Zaragoza, Spain, 10th - 13th September 2019.

Abstract: In this paper, we investigate the trust mechanism of Lightweight
Scalable BlockChain (LSB), which is a Blockchain specifically designed
for Internet of Things networks, to show that a malicious participant in a
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1.1 Thesis Overview 15

Blockchain architecture has the possibility to pursue an On-Off attack and
downgrade the integrity of the distributed ledger. We choose a remote software
update process as an instance to represent this violation. Finally, using the
actor-based language Rebeca, we provide a model of a system under attack
and verify the described attack scenario.

Paper contributions: The main contribution of this paper is modeling the On-
Off attack scenario using the Timed Rebeca and verifying the trust mechanism
of Lightweight Scalable Block Chain (LSB) by performing model checking.
Furthermore, the integrity property of LSB is defined as an assertion to indicate
in which state of the LSB protocol the property is violated.
My role: I was the main driver of the work. The co-authors contributed with
reviews and comments for improving the paper and suggestions on how to
accomplish the paper results.

Paper B: An actor-based approach for security analysis of cyber-physical
systems, Fereidoun Moradi, Sara Abbaspour Asadollah, Ali Sedaghatbaf,
Aida Čaušević, Marjan Sirjani, and Carolyn Talcott. The 25th International
Conference on Formal Methods for Industrial Critical Systems (FMICS 2020),
Vienna, Austria, 2nd-3th September 2020.

Abstract: Cyber-Physical Systems are networks of interconnected computing,
networking, and physical devices. Communicating through a network makes
these systems vulnerable to possible malicious attacks. These systems may
play a crucial role in controlling critical infrastructures and their security is of
paramount importance. Formal modeling and verification can be effectively
used for evaluating secure designs, particularly at the architecture level of
complex systems. In this work, we present an actor-based approach for security
analysis of cyber-physical systems at the design phase. We use Timed Rebeca,
an actor-based modeling language, to model the behavior of components and
potential attacks, and verify the security properties using the Rebeca model
checking tool. We employ the STRIDE model as a reference for classifying
the attacks. To demonstrate the applicability of our approach, we use a Secure
Water Treatment (SWaT) system as a case study. We analyze the architecture
of the SWaT system using three different attack schemes in which various parts
of the system network and physical devices are compromised. In the end, we
identify single and combined attack scenarios that violate security properties.

Paper contributions: In this paper, three attack modeling schemes are
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16 Chapter 1. Introduction

defined and employed to discover possible vulnerabilities in communication
and components of cyber-physical systems. A formal approach is proposed to
evaluate the system security using model checking. In addition, our evaluation
of a Secure Water Treatment (SWaT) system resulted in finding several attack
scenarios that violate security properties.
My role: I was the main driver of the work. The co-authors reviewed the work
and helped in finding the correct terminologies and structure for writing the
paper. They pointed out the possible extension of the work and enriched the
main idea.

Paper C: Monitoring cyber-physical systems using a tiny twin to prevent
cyber-attacks, Fereidoun Moradi, Maryam Bagheri, Hanieh Rahmati, Hamed
Yazdi, Sara Abbaspour Asadollah, and Marjan Sirjani. The 28th International
Symposium on Model Checking Software (SPIN 2022), Virtual Event, May
21, 2022.

Abstract: We propose a method for detecting attacks on sensor data and
control commands transmitted within cyber-physical systems. The method
involves developing a monitor that uses an abstract behavioral model, called
the Tiny Digital Twin, to detect false sensor data and faulty control commands.
The Tiny Digital Twin is a state transition system that represents the observable
behavior of the system from the monitor (and controllers) point of view. At
runtime, the monitor observes the sensor data and control commands and
checks whether they are consistent with the state transitions in the Tiny Digital
Twin. If an inconsistency is detected, the monitor produces an alarm. To
build the Tiny Digital Twin, we use the Rebeca modeling language to model
the system components and physical processes. We then use the Afra model
checker to generate the state space, which is automatically reduced to keep
the observable behavior of the system and preserve trace equivalence. We
demonstrate the effectiveness of our method by applying it to a Temperature
Control System (TCS) case study. The evaluation shows that the approach is
capable of detecting attacks and enhancing Cyber-Physical System security.

Paper contributions: This work has two contributions: first, we create the
Tiny Digital Twin by abstracting the behavioral model of the system, second,
we propose a monitoring algorithm that uses the Tiny Digital Twin to detect
disturbances against the system. We implement a monitor in Lingua Franca
(LF) and test it on an example system.
My role: I was the main author of the paper. The second author helped
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1.1 Thesis Overview 17

in examining the abstraction techniques for reducing the state space and
presenting the theories behind the work. The third and fourth co-authors
helped in writing several tiny examples in Timed Rebeca and developing the
monitor. The two last co-authors helped to improve the main idea, writing and
revising the paper, and choosing the venue for submission.

Paper D: Tiny Twins for Detecting Cyber-Attacks at Runtime using Concise
Rebeca Time Transition System, Fereidoun Moradi, Bahman Pourvatan, Sara
Abbaspour Asadollah, and Marjan Sirjani. Journal of Parallel and Distributed
Computing (JPDC), page 104780, 2023.

Abstract: In this paper, we present a formal foundation for our approach to
mapping the state space of the Timed Rebeca model into a Labeled Transition
System (LTS), abstracting the model, and creating a Tiny Digital Twin. We
achieve this by defining a Concise Rebeca Timed Transition System (CRTTS)
and implementing an ltscast tool to convert CRTTS into an LTS. To abstract
away non-observable actions from the LTS while preserving trace equivalence
between the original model and its abstracted version, we use the mCRL2
ltsconvert tool. A monitor is designed where it uses the Tiny Digital Twin to
check the consistency of the actual system behavior at runtime. The monitor
deals with physical time in the real world based on physical clocks, whereas
time in the Timed Rebeca model and subsequently in the Tiny Digital Twin
is represented as logical time. To synchronize logical time and physical time,
we develop the monitor using the coordination language Lingua Franca (LF),
which aligns these two timelines at runtime. LF employs a scheduler that
monitors the local clock of each actor and delays processing the message until
its measurement of physical time exceeds a threshold. We demonstrate the
applicability of our approach in detecting attacks using a Temperature Control
System (TCS) case study.

Paper contributions: The main contributions are the definition of theoretical
concepts and developing the ltscast tool for mapping the state space into a
format that is an input of the ltsconvert tool.
My role: I was the main author of the paper. The second author helped
me to understand the logic for describing the mapping techniques and how
to properly specify and write the mathematical equations. The other co-
authors helped to improve the main idea behind the work, and they revised and
improved the manuscript for submission.
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Paper E: CRYSTAL Framework: Cybersecurity Assurance for Cyber-Physical
Systems, Fereidoun Moradi, Sara Abbaspour Asadollah, Bahman Pourvatan,
Zahra Moezkarimi, and Marjan Sirjani. Journal of Logical and Algebraic
Methods in Programming (JLAMP), 2024.

Abstract: We propose CRYSTAL framework for automated cybersecurity
assurance of cyber-physical systems (CPS) at design time and runtime. We
build attack models and apply formal verification to recognize potential attacks
that may lead to security violations. We focus on both communication and
computation in designing the attack models. Using CRYSTAL, we are able to
systematically model and check complex coordinated attacks. The cornerstone
of CRYSTAL is its architecture based on the MAPE-K3 feedback loop [11]
where we have components to monitor the system, analyze the behavior of
the system, plan accordingly, and actuate necessary actions. In this paper we
discuss the applicability of CRYSTAL in security analysis and attack detection
for different case studies, Pneumatic Control System (PCS), Temperature
Control System (TCS), and Secure Water Treatment System (SWaT). We
provide a detailed description of the framework and explain how it works in
different cases.

Paper contributions: The CRYSTAL is designed to complement an industrial
cybersecurity program. The CRYSTAL framework comprises modeling
and programming for constructing cyber-physical systems, security analysis
through model checking, and runtime monitoring. It provides the industrial
system development with an opportunity to identify areas where existing
processes can be strengthened.
My role: I was the main author of the paper. The co-authors helped to improve
and precisely revise the case studies in the manuscript for submission.
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Chapter 2

Background

In this chapter, we present the background required by the current research,
helping in the understanding of its content.

2.1 Security Terminology

Vulnerabilities, Threats and Attacks. The security of a system can be
compromised by vulnerabilities, which refer to security flaws in the design or
software of the system that create potential security violations [27]. A threat
is any malicious behavior that attempts to gain access to the system without
permission, while an attack is an action that exploits the vulnerabilities [28,
29].
Modeling Attacks. The attack models show the system from the attacker’s
point of view. By designing attack models, we can observe the behavior of the
system under attack (i.e., attack scenarios) and address possible vulnerabilities
that could be exploited by attackers [30].
STRIDE. Microsoft STRIDE [31] threat modeling methodology aims to
ensure that the design of the system meets the security requirements. The
STRIDE stands for Spoofing, Tampering, Repudiation, Information disclosure,
Denial of service, and Elevation of privilege. The STRIDE supports
recognizing vulnerabilities, understanding attacks, and proposing mitigation
strategies. It shows which aspects of the security of the system (confidentiality,
integrity, and availability) can be compromised.
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20 Chapter 2. Background

2.2 Model Checking and Abstracting Model
Following are some basic concepts related to this thesis, including system
models, model checking, abstraction, and system monitoring.
Model Checking. Model checking is a formal method that examines all
possible behaviors of a system model to determine whether a specified property
is satisfied [32]. Model checking algorithms are embedded in tools that
provide integrated environments to use specification languages for modeling
and verification purposes. A model checker tool receives two inputs: a model
of the behavior of the system, and a set of properties [33, 32]. The model
checking algorithm generates a state space, i.e. state transition diagram, that
indicates the changes in system behavior. The increase in size and complexity
of the system may lead to the explosion of state space. In case of a property
violation, the model checker tool produces a counter-example showing the path
of the events that lead to the violation.
Abstracting Models. In the context of system modeling and analysis, there
are different purposes for which system models are built [34]. Modeling the
behavior of the system is a useful way of identifying possible faults. The
behavioral model represents the behavior of the system based on the system
specification and the requirements. However, sometimes the model of a
system can be complex due to the involvement of various entities and features.
Model abstraction techniques allow significantly reduce the complexity of the
analyzed systems [35]. For example, homomorphism techniques map concrete
states and action labels to their abstract versions [35].

2.3 System Monitoring
Monitoring is a technique to check the correctness of execution traces of
a system [36]. It verifies certain properties over the system operation and
involves analysis techniques to observe the internal behaviour of a system
while the system interacts with other external entities. In addition to checking
the correctness of the system function during the operational phase, the monitor
can be used to detect disturbances and provide details to take appropriate
action. In the literature, the approach of monitoring along with adaptation
mechanism is referred to as the MAPE-K1 feedback loop [11] where verified
model of the system (called Model@runtime) is stored as the knowledge
component [37] in the feedback control loop. We need to generate an

1The acronym MAPE-K stands for Monitor, Analyze, Plan, Execute, plus Knowledge.
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2.4 Timed Rebeca 21

executable component(s) (monitors) for a system that can be used to check
the desirable properties during the system operation.

In order to construct an executable monitor, various types of programming
languages are available on different platforms that meet the system
requirements and are compatible with the developed system. However, it can
be more convenient to use specification languages that are directly converted
to respective executable code.

We use Lingua Franca (LF) [16] to build an executable model of the system.
LF is a programming language based on the Reactor model of computation [17]
for building CPSs. In LF, a target language such as C or C++ can be chosen
for writing the body of reactors. Reactors are very close to Rebeca in syntax
and semantics as shown in [15], and this enables us to effectively generate an
executable target code from Timed Rebeca models.

2.4 Timed Rebeca

Rebeca (Reactive Object Language) [38] is an actor-based language for
modeling and formal verification of concurrent and distributed systems. An
actor, called rebec (reactive Object), is an instance of a reactive class. Rebecs
communicate via asynchronous message passing, which is non-blocking for
both sender and receiver. Timed Rebeca, as an extension of Rebeca, has a
notion of logical time. The logical time is local times of actors synchronized
among all actors, that can be seen as a global time. Each actor has a set of
variables that stores values, a set of methods (called message servers) and a
message bag to store the received messages along with their arrival times and
their deadlines. The actor takes a message with the least arrival time from its
bag and executes the corresponding message server. The actor can change the
values of its variables and send messages to its known actors while executing
a message server. In Timed Rebeca, the primitives delay and after are used to
model the progress of time while executing a message server.

Timed Rebeca is supported by Afra model checker tool [14]. Afra
generates the state space of the Timed Rebeca model, in which states contain
the local state of all actors and the logical time, and transitions represent
three types of possible actions including taking a message from the message
bag, executing the corresponding message server of the enabled actor, and
progressing the logical time of the model. An approach based on a shift-
equivalence relation is proposed in [13] to make the state space of a Timed
Rebeca model bounded. Two states are in the shift-equivalence relation when
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22 Chapter 2. Background

all the elements of both states have the same value except for the elements
related to time (like the current time value, and the time tags on the messages in
the queues including deadlines). The elements related to time can be different
but they should all have the same difference (shift) in their amount.

2.5 Lingua Franca (LF)
Lingua Franca is a coordination language based on the Reactor model for
programming CPSs [16, 39]. A Reactor model is a collection of reactors (like
rebecs in Rebeca). A reactor has one or more routines that are called reactions
(like message servers in Rebeca). Reactions define the functionality of the
reactor, and have access to a state shared with other reactions, but only within
the same reactor (similar to Rebeca). Reactors have named (and typed) ports
that allow them to connect to other reactors. Two reactors can communicate
if an output port of a reactor is connected to an input port of the other reactor.
The usage of ports establishes a clean separation between the functionality and
composition of reactors; a reactor only references its own ports. Reactions are
similar to the message handlers in the actor model. Reactions are triggered
by discrete events and may also produce them (similar to handling a message
and sending a message). An event relates a value to a tag that represents the
logical time at which the value is present (similar to a time tag for a message).
An event produced by one reactor is only observed by other reactors that are
connected to the port on which the event is produced. Events arrive at input
ports, and reactions produce events via output ports.

In LF, the logical time does not advance during a reaction. A reactor can
have one or more timers. Timers are like ports that can trigger reactions. A
timer has the form timer name(offset, period) that once triggers at the time
shown by offset (if offset is zero, then the timer triggers at the start time of
the execution), and then triggers periodically according to the period. LF has
a built-in type for specifying time intervals. A time interval consists of an
integer value accompanied by a time unit (e.g., sec for seconds or msec for
milliseconds). Timers are used for specifying periodic tasks, which are very
common in embedded computing and CPSs. Each LF code contains a main
reactor that is an entry point for the execution of the code. The mapping of
Timed Rebeca to Lingua Franca and reverse, including the timing features, is
a natural mapping that is discussed in [15, 18].
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Chapter 3

Research Problem

In this chapter, we describe the challenges and overall goal and present a
summary of sub-goals to meet different aspects of the main research goal.

3.1 Problem Formulation

Cyber-Physical Systems face various threats from cyber-physical attackers.
The impacts of these attacks are beyond data loss, as they may damage human
and physical processes [40].

Researchers have worked hard to make security rules and plans to keep
cyber-physical systems safe from cyberattacks. They mainly focus on stopping
these attacks at different levels, using what they call the defense-in-depth
strategy [41]. While this is important for protecting systems, we also need
to make sure that systems are more resilient to attacks if and when malicious
actors gain access. One important step in making these systems more resilient
is identifying security vulnerabilities unique to the systems during the design
phase. Once the vulnerabilities have been identified, we can take steps to
fix the vulnerabilities. This might mean making small changes to the code
that controls the system or redesigning parts of the system to make them
stronger (e.g., including intrusion detection systems (IDS) or forcing policies
and rules). Depending on the criticality of the system, and the extent to which
it is vulnerable to attack, advanced system monitoring, adaptation methods,
and control strategy may be appropriate. Overall, the following challenges
arise while targeting the security of CPS applications: a) The uncertainty
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24 Chapter 3. Research Problem

in the environment of CPS applications, and errors in components make it
hard to keep the whole system secure. b) These systems have different
components that work in different ways, which makes it easier for attackers to
do complex and coordinated attacks. c) Modeling the behavior of both cyber
and physical parts is a challenge because they possess fundamentally different
semantics (i.e., discrete and continuous). d) The interactions between cyber
components and physical components make it challenging to predict control
program behavior at runtime.

Formal methods allow one to specify the design of systems with
mathematical models and check the desirable properties. One of the key
questions in applying formal verification methods for CPS security is how
to take advantage of existing formal mechanisms to automatically enhance
CPS security. Thus, the overall goal of this study is: ”facilitating the
security analysis of cyber-physical systems through modeling and formal
methods to automatically discover vulnerabilities at the design phase and
detect cyberattacks during the operational phase”.

The following research questions help us in achieving our overall goal:
RQ1: How can we model cyberattacks to systematically check vulnerabilities?

To address this research question we employ Timed Rebeca to specify the
components of the system and their interactions and build different types of
attacks against the security of the system. We systematically augment various
malicious changes to the functionality of components and the communications
between the components in the model and discover the sequence of actions
that violate the system requirements. This research question is aligned with
Sub-Goal 1 that is presented in chapter 3.2.
RQ2: How to detect cyberattacks at runtime effectively using our design
model?

To address this research question we develop a monitor that uses an abstract
behavioral model as a reference model (called a Tiny Digital Twin) to detect
cyberattacks. We create the Tiny Digital Twin while removing the non-
observable actions (the point of view of the monitor) from the state space and
abstracting the model at the right level of equivalency. We use LF language
that synchronizes the logical time in the model with the physical time of the
system to be able to check the behavior of the system at runtime. We detect
disturbances by comparing the actual runtime behavior with the specified
behavior in the model. However, the behavioral models of complex systems are
usually big and include actions that may be non-observable during monitoring.
The abstraction techniques help to remove the non-observable actions from the
model and reduce the complexity of the analyzed systems. There are various
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fundamental theories for abstracting behavioral models. We use classical
abstraction methods such as trace equivalence to reduce the model. This
research question is related to Sub-Goal 2 that is presented in chapter 3.2.
RQ3: How to assess the applicability of the automated discovery and the
runtime monitor in detecting attacks?

We use three case studies to assess the discovery of vulnerabilities at
the design phase and check the successful attacks discovered at runtime.
This research question focuses on evaluating the runtime monitor’s detection
capability with attack scenarios across various CPS applications, aligning with
Sub-Goal 1 and Sub-Goal 2 that are presented in chapter 3.2.

3.2 Research Goals
According to the main goal, ”facilitating the security analysis of cyber-
physical systems through modeling and formal methods to automatically
discover vulnerabilities at the design phase and detect cyberattacks during
the operational phase”, we define sub-goals below that concern the specific
challenges.

• Sub-Goal 1: Create attack models of importance/relevance for the
system security objectives

We increase the safety and security of the system by building a consistent
model and checking the behavior of the system against the respective
requirements at the design phase. This step helps to ensure that the
system is designed to meet the necessary security requirements. The
actor models provide a natural way to represent the various entities
and their interactions within the system. Rebeca actor-based modeling
language is well-suited for modeling distributed and concurrent systems,
and CPS applications often fall into this category. The characteristics of
CPS highlight its combination of physical and computational entities,
requiring timely interaction, encompassing diverse components, and
emphasis on robust design. Using the features of Timed Rebeca, such
as message passing, timing features, and non-deterministic assignment,
we model the behavior of the system and its environment. In order to
conduct a security analysis of the system, various attack scenarios are
modeled. The architecture of the system is analyzed using different
attack schemes in which various parts of the system network and
devices are modeled as compromised versions. These attack scenarios
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are launched individually or in combination to determine whether the
security properties of the system are still being preserved. If a security
violation occurs during the analysis, it is important to track the sequence
of events leading to the successful violation. This information is used to
strengthen the system’s security and prevent potential damage.

• Sub-Goal 2: Develop a runtime monitor to check the system behavior at
runtime using the Tiny Digital Twin as a reference model

It is important to consider changes in system behavior during operation.
To achieve this, it is necessary to compare the order and timing of the
actions of the actual system with the transitions in the behavioral model.
We develop a monitor that uses a reference model (called a Tiny Digital
Twin) to observe the actions and detect inconsistencies at runtime. We
use Lengua Franca (LF) language to synchronize the logical time in the
model with the physical time and develop a runtime monitor to be used
in actual systems. We use the similarities between Rebeca actor-based
modeling language and Lengua Franca (LF) language to transform the
design models to executable codes.

The behavioral models of complex systems typically has large state
spaces, which can make model-based runtime analysis challenging.
The Tiny Digital Twin is derived from the state space by abstracting
away non-observable actions. Abstraction techniques can help to hide
unimportant details and preserve important features for security analysis.
The main idea is to have the right level of equivalency to reduce the
complexity of the model and the monitoring. In order to abstract
the behavioral model and create the Tiny Digital Twin, we map the
state space generated by the model checker to a format to be used
in action-based abstraction techniques. We assess the capability of
our methodology in revealing vulnerabilities and detecting malicious
behavior at runtime in various case studies with different levels of
complexity and functional objectives. The results of the security analysis
show the strengths and limitations of the method.
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Chapter 4

Research Methodology

An overview of the research process that is used for our research work is
illustrated in Figure 4.1. The core of our research methodology includes four
steps adopted from Holz et al. [42] In Step 1, we start to define the particular
research goals. This step is the initial point for defining the research goals that
are related to the real-world problems, (e.g. Cyber-Physical System security
and its consequences), the state-of-the-practice (new technologies and tools),
and the state-of-the-art literature (scientific research).

In order to formulate a research goal, critical analysis of relevant literature
and practice is carried out based on the method presented in [43]. This
gives confidence about the defined goals matched with the existing body of
knowledge. The formulation of the research goals is not a linear process,
maybe they are refined and changed continuously until we figure out the final
suitable version of the goals.

In Step 2, we propose a solution that addresses an identified research goal.
We apply established research methods such as case studies, for developing the
solutions. Then, in Step 3, the feasibility of the solution is tested in the context,
for which we use the proof of concept method (i.e., applying formal methods
to verify the correctness of the system design) [42]. The Step 4 presents the
validation process of the research results. The main goal of the validation
phase is to assess whether the research results are applicable to the earlier
identified real-world problems in the initial step of the research process. This
step is performed in close cooperation with industry by applying the proof-
by-demonstration [42] research method where both researchers and engineers
evaluate the research results. This is an iterative development process where
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28 Chapter 4. Research Methodology

the goals and requirements are changed to meet the desired outcome.
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Chapter 5

Thesis Contributions

The following concepts and tools have been completed for the Ph.D. thesis.
The four main contributions indicate how they cover the entire proposed plan.

Contribution 1: We present how to model the components of a CPS as
actors in Timed Rebeca and define interactions between the components as
messages passed between the actors. We define security and safety properties
as assertions and provide a method for security analysis using model checking.
We categorize attack types in three attack modeling schemes considering the
STRIDE threat modeling for augmenting attacks in Timed Rebeca models.

Contribution 2: We propose a monitoring algorithm to find
inconsistencies at runtime. We implement a monitor in Lingua Franca (LF)
language and simulate several systems under attacks to check the detection
capability of the monitor. We present a mapping technique to generate
executable codes from Timed Rebeca models.

Contribution 3: We create a Tiny Digital Twin; for that, we develop ltscast
tool to map the state space generated by Afra model checker into a format
that can be the input of mCRL2 ltsconvert tool, and then we abstract it using
the reduction techniques of the tool. We provide a formal foundation for the
mapping.

Contribution 4: We present details of our methodology by proposing
CRYSTAL framework. The capability of the CRYSTAL is shown in three
different case studies. These case studies highlight the importance of adapting
our modeling approach and methodology to the specific characteristics of each
system such as centralized and distributed control systems, including periodic
and trigger-based sensors, or multiple connections to the control systems.

29

Chapter 5

Thesis Contributions

The following concepts and tools have been completed for the Ph.D. thesis.
The four main contributions indicate how they cover the entire proposed plan.

Contribution 1: We present how to model the components of a CPS as
actors in Timed Rebeca and define interactions between the components as
messages passed between the actors. We define security and safety properties
as assertions and provide a method for security analysis using model checking.
We categorize attack types in three attack modeling schemes considering the
STRIDE threat modeling for augmenting attacks in Timed Rebeca models.

Contribution 2: We propose a monitoring algorithm to find
inconsistencies at runtime. We implement a monitor in Lingua Franca (LF)
language and simulate several systems under attacks to check the detection
capability of the monitor. We present a mapping technique to generate
executable codes from Timed Rebeca models.

Contribution 3: We create a Tiny Digital Twin; for that, we develop ltscast
tool to map the state space generated by Afra model checker into a format
that can be the input of mCRL2 ltsconvert tool, and then we abstract it using
the reduction techniques of the tool. We provide a formal foundation for the
mapping.

Contribution 4: We present details of our methodology by proposing
CRYSTAL framework. The capability of the CRYSTAL is shown in three
different case studies. These case studies highlight the importance of adapting
our modeling approach and methodology to the specific characteristics of each
system such as centralized and distributed control systems, including periodic
and trigger-based sensors, or multiple connections to the control systems.

29

47



30 Chapter 5. Thesis Contributions

5.1 Contributions and Goals Relationship
We present the relationship between the contributions of the papers and
identified research goals that are included in the Ph.D. thesis as shown in
Table 5.1.

Table 5.1: Relationship between Contributions, Papers and Goals.

C1 C2 C3 C4

Sub-Goal 1 ✓ ✓

Sub-Goal 2 ✓ ✓ ✓

Papers A&B C D E

The attack models are expected in this study. The components of the
system and their interactions are defined in the behavioral model. Three attack
modeling schemes are defined in Contribution 1 where attacks on components
and communications are augmented in the system model. The outcome of
analyzing system design using attack models fulfills Sub-Goal 1.

Developing a detection system accomplishes Sub-Goal 2, where the
monitor is responsible for checking the sequence of events using the Tiny
Digital Twin and distinguishing between the specified behavior and malicious
actions as described in Contribution 2. The creation of the Tiny Digital Twin
is supported by a toolset. The theory for mapping the state space to the input
format of the mCRL2 and driving the Tiny Digital Twin using the ltsconvert
tool is presented in Contribution 3.

In Contribution 4, three case studies have been selected to show the
feasibility of the methodology. They present the difficulties and limitations
of the security analysis in various systems. They validate the outputs from the
developed tools that are considered in Sub-Goal 1 and Sub-Goal 2.
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Chapter 6

Related Work and
Comparison

Modeling attacks: Attack graphs can serve as a basis for detection and
security analysis [44]. Byres et al. [45] investigate vulnerabilities in Modbus-
based SCADA systems using attack trees. The authors present attack
trees for gaining access to the SCADA system and provide an estimated
level of technical difficulty, the severity of impact, and underlying critical
vulnerabilities for the possible goals of an attacker. Yan et al. [46] develop an
attack graph to identify possible intrusion scenarios, and propose an intrusion
detection system. Wasicek et al. [47] propose an aspect-oriented technique
to model attacks against cyber-physical systems. The authors in [47] use
Ptolemy [48] as the modeling and simulation framework and demonstrate the
practicality of their technique through modeling four types of attacks (fuzz
attack, interruption, man-in-the-middle, and replay attack) on an automotive
control system. In [49], Rocchetto and Tippenhauer present a taxonomy of
the diverse attacker models for cyber-physical systems security. They employ
the attacker models to investigate the impact of single-point cyber attacks on a
Secure Water Treatment System (SWaT) [50]. Fritz and Zhang [51] consider
cyber-physical systems as discrete-event systems and model them using a
variant of Petri nets. They propose a method based on permutation matrices to
detect deception attacks. In particular, they can detect attacks by changing the
input and output behavior of the system and analyzing its effect on the system
behavior. Covert attacks and replay attacks are two kinds of attacks modeled
and analyzed in this study.
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32 Chapter 6. Related Work and Comparison

Discovering vulnerabilities using model checkers: In [52], Kang et al.
use Alloy to model a scaled-down version of a Secure Water Treatment
System (SWaT) and potential attackers. They can discover the undetected
attacks which cause safety failure (e.g., water tank overflow). They compare
the actual invariant of the SWaT system and the output state in the Alloy
model checker during system operation. Rocchetto and Tippenhauer [53]
use the ASLan++ tool for modeling the physical layer interactions and the
CL-AtSe tool for analyzing the state space. They succeed to find eight attack
scenarios on SWaT. Nigam and Talcott [54] use Maude [55] to automate
security analysis of the protocols in Industry 4.0 applications. They formalize
networked sets of devices and a symbolic intruder model in rewriting logic.
Hailesellasie and Hasan [56] consider verification of the PLC network within
an industrial control system by creating graphs of the potentially compromised
PLC program and a trusted version of the program. They create a formal model
of both programs in UPPAAL, then translate the model to attribute graphs. The
matching comparison of the graphs provides guarantees that the system has
not been compromised. Their approach is demonstrated in a case study of an
industrial water level control system.

Security analysis frameworks: Feng et al. [57] design a framework
to systematically generate rules from information contained within the
operational logs of industrial control systems. Such rules are then selected
by system engineers to generate an invariant-based intrusion detection system.
Winnicki et al. [58] propose an approach to discover the behavior of cyber-
physical systems with probing. They slightly change the system behavior and
observe how the controls react to take the system back to its normal state. They
detect attacks by comparing the normal changes and the abnormal alteration
in the process. In [59], a model checking-based framework called ForeSee is
proposed where it evaluates IoT system security. It builds a multi-layer graph
by simultaneously modeling all of the essential components of the system,
including the physical environment, devices, communication protocols, and
applications. The SPIN model checker [60] can then analyze the generated
graph to validate system security properties or generate attack paths if there
are any violations. Green et al. [61] provide two practical examples based
on a Man-In-The-Middle scenario, demonstrating the types of information
an attacker needs to obtain in order to manipulate the process of the system
and bypass the detection system. The authors in [62] propose a method using
SysML-Sec, a modeling system based on UML, for working with large code
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bases. The authors suggest creating models in SysML and iteratively refining
the behavior of the model by adding more behavioral and security properties
using SysML-Sec. The model can be automatically translated to pi-calculus
by use of the TTool [63] and formally analyzed by ProVerif.

Runtime monitoring for detecting cyberattacks: Lanotte et al. [64] propose
a formal approach based on runtime enforcement to ensure specification
compliance in networks of controllers. They define a synthesis algorithm
with respect to Ligatti et al.’s edit automata [65]. The algorithm takes an
alphabet of observable actions and a timed correctness property and returns an
edit automaton as an enforcer. In their work, the enforcers are synthesized
regarding the deterministic behavior of the controllers. The network of
enforcers preserves weak bisimilarity equivalence in relation to the networks
of controllers. In [66], authors propose adaptive security policies at runtime.
They use ProB model checker [67] to automatically detect the root cause of
security violations. They check design models against security constraints at
runtime. The authors in [68] propose monitors expressed as Quantified Event
Automata (QEAs) [69] to detect injection attacks against a system. QEAs
represent parametric specifications to be checked at runtime. The monitors
support event duplication that provides more protection against attacks. They
validate Java implementations of the monitors using attack examples on the
system [70].

Modeling and verification of cyber-physical systems: Hybrid automata [71]
provide formal modeling and analysis for cyber-physical system focusing on
the interaction between the discrete and continuous parts. UPPAAL SMC [72]
provides statistical model checking for stochastic hybrid systems. In UPPAAL
SMC, each component of the system is described as an automaton where
integer variables (usually called clocks) can be defined by simple constants,
or by general expressions involving clocks, allowing clock valuations to be
defined by ordinary differential equations [73]. MODEST toolset [74] contains
several analysis backends which can be used for the design and the formal
analysis of stochastic hybrid automata. In [75], Lanotte et al. use the safety
model checker prohver (a tool within MODEST) to verify the behavior of a
CPS application. They analyze three attacks targeting sensors and/or actuators
of the system by compromising either the corresponding physical device or
the communication network used by the device. They specify the system with
linear formulae to express nondeterministic assignments within a dense interval
and use shared actions to synchronize parallel components. In [76], Hybrid
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34 Chapter 6. Related Work and Comparison

Rebeca is proposed to support the modeling of cyber-physical systems. In
Hybrid Rebeca, physical actors are introduced as new computational entities
to encapsulate the physical behaviors. In [15], an example of a cyber-physical
system is modeled in Timed Rebeca and it is shown how to identify subtle
defects in the design. They propose an approach for formal verification of
cyber-physical systems and Lingua Franca codes, where they focus on the
cyber part and model a faithful interface to the physical part.

Comparison: We use STRIDE threat modeling to systematically construct
attack models, whereas others rely on known attacks to create attack profiles
(e.g., [49, 77, 61, 51, 47, 46]). This systematic approach ensures we cover
a wide range of potential attacks (single attacks and coordinated attacks),
providing a robust security analysis. On the other hand, approaches that use
attack profiles typically focus on predefined attack scenarios. These profiles
may capture some common attacks but might not address the full range of
potential attacks. Secondly, we incorporate actors into our approach, allowing
us to represent the various entities and components within the system, along
with their interactions. This approach reduces the semantic gap between
the model and the entities in real-world applications, enhancing the accuracy
and relevance of the system design. In contrast, other approaches (e.g.,
[52, 53, 56]) prioritize aspects like system architecture or data flow to discover
vulnerabilities. They may not explicitly represent the entities and their
respective roles. In our approach, the designed model can be mapped into
executable code using the natural mapping between Timed Rebeca and Lingua
Franca. We also use an abstract behavioral model for runtime monitoring,
which is automatically created using formal equivalence techniques. This
approach ensures a precise behavioral model, and the detection process
becomes efficient as the model represents observable behavior while hiding
unimportant details for monitoring. Moreover, the implementation of the
methods facilitates the automation of the abstraction process, the generation
of executable codes, and runtime monitoring.

In terms of attack detection using Tiny Digital Twin, we compare
CRYSTAL framework with some security frameworks such as ForeSee [59],
a rule-based framework in [57], PLCDefender [78] and Shade [79]. In [57],
a framework is proposed to systematically generate invariant rules from ICS
data logs to detect attacks. However, applying rules for detecting attacks is
usually difficult because of the generation of too many rules and their false
positives. All of these rules are either manually defined or require a large
amount of human effort. In CRYSTAL, our Tiny Digital Twin is automatically
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created and the monitor code is generated easily through the available mapping
between Timed Rebeca and LF. This model-based process reduces the human
effort to build a detection system and it ensures that the detection system works
without false positives. PLCDefender [78] is a remote attestation framework
with a physics-based model to preserve the control behavior integrity of PLC,
and Shade [79] is a shadow memory technology against control logic tamper
attacks. The capabilities of these two frameworks can only be used for specific
attacks and cannot comprehensively improve the security of CPS. However, in
CRYSTAL, the monitor can be utilized in various systems (e.g., IoT, ICS, or
PLC-based systems) and it can detect any cyberattacks that impact the system
and show a deviation from the desired behavior. In [59], ForeSee uses a
multi-layer graph to evaluate the security of the system. It checks the graph
using SPIN to see if there are any deviations from what is expected in the
graph and specified security properties. The ForeSee framework focuses on the
static analysis of IoT applications and provides some optimization algorithms
for reducing the computational complexity of the analysis, while CRYSTAL
supports both the design time and runtime phases of the system development
to identify vulnerabilities and detect attacks. In [62], a detection method
is presented to use SysML-Sec, a UML-based model, for the system with
large codes. In their work, TTool [63] is used to translate UML models to
pi-calculus. Indeed, UML model may not explicitly represent the entities in
the system and the environment. Therefore, the translation and the result pi-
calculus may not be accurate enough. In CRYSTAL, we use Timed Rebeca,
i.e., a formal language, for modeling entities and the environment in which the
language enables us to model the timing and dynamic features of the system.

In CRYSTAL, instead of employing hybrid automata like the work in [72,
75] for modeling and verifying cyber-physical systems, we adopt a similar
approach as presented in [15] for modeling cyber-physical systems. We model
the software system, which monitors and receives data from the physical
processes and sends control commands back to them. By employing this
model, we can verify if the software system produces the correct output based
on the given requirements when certain data is received. We also model the
environment (dynamic of the system) using non-deterministic assignment for
the state variables. As an example, to represent a physical component, i.e., the
temperature of a physical room, we use an actor where the state variables model
different states of the actor. In the Timed Rebeca model, discrete values are
assigned to the state variables non-deterministically. We model the changes at
certain times (or when an event occurs). We use the after construct appended to
a send statement to model these changes during the time. Any change (event) in
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the system is modeled by executing a message server (handling the message).
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Chapter 7

Future Work

For extending the CRYTAL framework, there are several possible directions.
In the runtime monitoring phase (stage 3), a module can be developed to
generate repair actions for the monitor. The module recovers the system after
attacks based on the adaptation plans, instead of just terminating the system
in case of successful attack detection. The module can use reinforcement
learning to automatically generate potential protection strategies. In addition,
writing policies and rules within the monitor to catch abnormal behavior in
the system is an approach that can come along with the Tiny Digital Twin to
improve the capability of the monitor. In the design-time security analysis
phase (stage 2), known failures can be discovered based on the insights gained
from property violations. This approach can involve the development of a
pathfinding method, aimed at identifying the recovery paths within the Tiny
Digital Twin, with a focus on achieving the shortest possible recovery times.
Moreover, proposing self-healing mechanisms that address unknown failures,
such as attacks that are not discovered during the design phase (e.g., stealthy
attacks) is favorable. In the modeling and code generation phase (stage 1),
manual mapping Timed Rebeca to LF codes may introduce additional errors.
For this reason, the development of a code transformation, specifically, a
compiler that translates a Timed Rebeca model to an LF code, is appreciated.
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[35] T. Sminia and M. Á. V. Espada, “Modal abstraction and replication of
processes with data,”

[36] X. Zheng, C. Julien, R. Podorozhny, F. Cassez, and T. Rakotoarivelo,
“Efficient and scalable runtime monitoring for cyber–physical system,”
IEEE Systems Journal, vol. 12, no. 2, pp. 1667–1678, 2016.

[37] M. Bagheri, M. Sirjani, E. Khamespanah, N. Khakpour, I. Akkaya,
A. Movaghar, and E. A. Lee, “Coordinated actor model of self-adaptive
track-based traffic control systems,” Journal of Systems and Software,
vol. 143, pp. 116–139, 2018.

[38] M. Sirjani and M. M. Jaghoori, “Ten years of analyzing actors: Rebeca
experience,” in Formal Modeling: Actors, Open Systems, Biological
Systems, pp. 20–56, Springer, 2011.

[39] M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee, “Toward a lingua
franca for deterministic concurrent systems,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 20, no. 4, pp. 1–27, 2021.

[40] J. M. Taylor and H. R. Sharif, “Security challenges and methods
for protecting critical infrastructure cyber-physical systems,” in 2017
International Conference on Selected Topics in Mobile and Wireless
Networking (MoWNeT), pp. 1–6, IEEE, 2017.

[41] X. Ning and J. Jiang, “Defense-in-depth against insider attacks in cyber-
physical systems,” Internet of Things and Cyber-Physical Systems, vol. 2,
pp. 203–211, 2022.

[42] H. J. Holz, A. Applin, B. Haberman, D. Joyce, H. Purchase, and C. Reed,
“Research methods in computing: what are they, and how should we
teach them?,” ACM SIGCSE Bulletin, vol. 38, no. 4, pp. 96–114, 2006.

60



BIBLIOGRAPHY 43

[43] M. V. Zelkowitz and D. Wallace, “Experimental validation in software
engineering,” Information and Software Technology, vol. 39, no. 11,
pp. 735–743, 1997.

[44] S. Jha, O. Sheyner, and J. Wing, “Two formal analyses of attack graphs,”
in Proceedings 15th IEEE Computer Security Foundations Workshop.
CSFW-15, pp. 49–63, IEEE, 2002.

[45] E. J. Byres, M. Franz, and D. Miller, “The use of attack trees in assessing
vulnerabilities in scada systems,” in Proceedings of the international
infrastructure survivability workshop, pp. 3–10, Citeseer, 2004.

[46] J. Yan, M. Govindarasu, C.-C. Liu, M. Ni, and U. Vaidya, “Risk
assessment framework for power control systems with pmu-based
intrusion response system,” Journal of Modern Power Systems and Clean
Energy, vol. 3, no. 3, pp. 321–331, 2015.

[47] A. Wasicek, P. Derler, and E. A. Lee, “Aspect-oriented modeling of
attacks in automotive cyber-physical systems,” in ACM/EDAC/IEEE
Design Automation Conference (DAC), 2014.

[48] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, Ptolemy: A
Framework for Simulating and Prototyping Heterogeneous Systems,
p. 527–543. Kluwer Academic Publishers, 2001.

[49] M. Rocchetto and N. O. Tippenhauer, “On attacker models and profiles
for cyber-physical systems,” in Computer Security–ESORICS 2016: 21st
European Symposium on Research in Computer Security, Heraklion,
Greece, September 26-30, 2016, Proceedings, Part II 21, pp. 427–449,
Springer, 2016.

[50] S. Adepu and A. Mathur, “An investigation into the response of a water
treatment system to cyber attacks,” in 2016 IEEE 17th International
Symposium on High Assurance Systems Engineering (HASE), pp. 141–
148, IEEE, 2016.

[51] R. Fritz and P. Zhang, “Modeling and detection of cyber attacks on
discrete event systems,” IFAC-PapersOnLine, vol. 51, no. 7, pp. 285–290,
2018.

[52] E. Kang, S. Adepu, D. Jackson, and A. P. Mathur, “Model-based
security analysis of a water treatment system,” in Proceedings of Software
Engineering for Smart Cyber-Physical Systems, pp. 22–28, ACM, 2016.

BIBLIOGRAPHY 43

[43] M. V. Zelkowitz and D. Wallace, “Experimental validation in software
engineering,” Information and Software Technology, vol. 39, no. 11,
pp. 735–743, 1997.

[44] S. Jha, O. Sheyner, and J. Wing, “Two formal analyses of attack graphs,”
in Proceedings 15th IEEE Computer Security Foundations Workshop.
CSFW-15, pp. 49–63, IEEE, 2002.

[45] E. J. Byres, M. Franz, and D. Miller, “The use of attack trees in assessing
vulnerabilities in scada systems,” in Proceedings of the international
infrastructure survivability workshop, pp. 3–10, Citeseer, 2004.

[46] J. Yan, M. Govindarasu, C.-C. Liu, M. Ni, and U. Vaidya, “Risk
assessment framework for power control systems with pmu-based
intrusion response system,” Journal of Modern Power Systems and Clean
Energy, vol. 3, no. 3, pp. 321–331, 2015.

[47] A. Wasicek, P. Derler, and E. A. Lee, “Aspect-oriented modeling of
attacks in automotive cyber-physical systems,” in ACM/EDAC/IEEE
Design Automation Conference (DAC), 2014.

[48] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, Ptolemy: A
Framework for Simulating and Prototyping Heterogeneous Systems,
p. 527–543. Kluwer Academic Publishers, 2001.

[49] M. Rocchetto and N. O. Tippenhauer, “On attacker models and profiles
for cyber-physical systems,” in Computer Security–ESORICS 2016: 21st
European Symposium on Research in Computer Security, Heraklion,
Greece, September 26-30, 2016, Proceedings, Part II 21, pp. 427–449,
Springer, 2016.

[50] S. Adepu and A. Mathur, “An investigation into the response of a water
treatment system to cyber attacks,” in 2016 IEEE 17th International
Symposium on High Assurance Systems Engineering (HASE), pp. 141–
148, IEEE, 2016.

[51] R. Fritz and P. Zhang, “Modeling and detection of cyber attacks on
discrete event systems,” IFAC-PapersOnLine, vol. 51, no. 7, pp. 285–290,
2018.

[52] E. Kang, S. Adepu, D. Jackson, and A. P. Mathur, “Model-based
security analysis of a water treatment system,” in Proceedings of Software
Engineering for Smart Cyber-Physical Systems, pp. 22–28, ACM, 2016.

61



44 BIBLIOGRAPHY

[53] M. Rocchetto and N. O. Tippenhauer, “Towards formal security analysis
of industrial control systems,” in ACM Asia Conference on Computer and
Communications Security, pp. 114–126, ACM, 2017.

[54] V. Nigam and C. Talcott, “Formal security verification of industry
4.0 applications,” in 24th IEEE International Conference on Emerging
Technologies and Factory Automation, 2019.

[55] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and
C. Talcott, All About Maude-A High-Performance Logical Framework:
How to Specify, Program, and Verify Systems in Rewriting Logic,
vol. 4350. Springer, 2007.

[56] M. Hailesellasie and S. R. Hasan, “Intrusion detection in plc-
based industrial control systems using formal verification approach in
conjunction with graphs,” Journal of Hardware and Systems Security,
vol. 2, pp. 1–14, 2018.

[57] C. Feng, V. R. Palleti, A. Mathur, and D. Chana, “A systematic
framework to generate invariants for anomaly detection in industrial
control systems.,” in NDSS, 2019.

[58] A. Winnicki, M. Krotofil, and D. Gollmann, “Cyber-physical system
discovery: Reverse engineering physical processes,” in Proceedings of
the 3rd ACM Workshop on Cyber-Physical System Security, pp. 3–14,
2017.

[59] Z. Fang, H. Fu, T. Gu, Z. Qian, T. Jaeger, P. Hu, and P. Mohapatra,
“A model checking-based security analysis framework for iot systems,”
High-Confidence Computing, vol. 1, no. 1, p. 100004, 2021.

[60] G. J. Holzmann, “The model checker spin,” IEEE Transactions on
software engineering, vol. 23, no. 5, pp. 279–295, 1997.

[61] B. Green, M. Krotofil, and A. Abbasi, “On the significance of process
comprehension for conducting targeted ics attacks,” in Proceedings of
the 2017 Workshop on Cyber-Physical Systems Security and PrivaCy,
pp. 57–67, 2017.

[62] L. Apvrille, L. Li, and Y. Roudier, “Model-driven engineering for
designing safe and secure embedded systems,” in 2016 Architecture-
Centric Virtual Integration (ACVI), pp. 4–7, IEEE, 2016.

44 BIBLIOGRAPHY

[53] M. Rocchetto and N. O. Tippenhauer, “Towards formal security analysis
of industrial control systems,” in ACM Asia Conference on Computer and
Communications Security, pp. 114–126, ACM, 2017.

[54] V. Nigam and C. Talcott, “Formal security verification of industry
4.0 applications,” in 24th IEEE International Conference on Emerging
Technologies and Factory Automation, 2019.

[55] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and
C. Talcott, All About Maude-A High-Performance Logical Framework:
How to Specify, Program, and Verify Systems in Rewriting Logic,
vol. 4350. Springer, 2007.

[56] M. Hailesellasie and S. R. Hasan, “Intrusion detection in plc-
based industrial control systems using formal verification approach in
conjunction with graphs,” Journal of Hardware and Systems Security,
vol. 2, pp. 1–14, 2018.

[57] C. Feng, V. R. Palleti, A. Mathur, and D. Chana, “A systematic
framework to generate invariants for anomaly detection in industrial
control systems.,” in NDSS, 2019.

[58] A. Winnicki, M. Krotofil, and D. Gollmann, “Cyber-physical system
discovery: Reverse engineering physical processes,” in Proceedings of
the 3rd ACM Workshop on Cyber-Physical System Security, pp. 3–14,
2017.

[59] Z. Fang, H. Fu, T. Gu, Z. Qian, T. Jaeger, P. Hu, and P. Mohapatra,
“A model checking-based security analysis framework for iot systems,”
High-Confidence Computing, vol. 1, no. 1, p. 100004, 2021.

[60] G. J. Holzmann, “The model checker spin,” IEEE Transactions on
software engineering, vol. 23, no. 5, pp. 279–295, 1997.

[61] B. Green, M. Krotofil, and A. Abbasi, “On the significance of process
comprehension for conducting targeted ics attacks,” in Proceedings of
the 2017 Workshop on Cyber-Physical Systems Security and PrivaCy,
pp. 57–67, 2017.

[62] L. Apvrille, L. Li, and Y. Roudier, “Model-driven engineering for
designing safe and secure embedded systems,” in 2016 Architecture-
Centric Virtual Integration (ACVI), pp. 4–7, IEEE, 2016.

62



BIBLIOGRAPHY 45

[63] A. Enrici, L. Apvrille, and R. Pacalet, “Ttool/diplodocusdf: a
uml environment for hardware/software co-design of data-dominated
systems-on-chip,” Demonstration at DATE, 2014.

[64] R. Lanotte, M. Merro, and A. Munteanu, “A process calculus approach to
detection and mitigation of plc malware,” Theoretical Computer Science,
vol. 890, pp. 125–146, 2021.

[65] J. Ligatti, L. Bauer, and D. Walker, “Edit automata: Enforcement
mechanisms for run-time security policies,” International Journal of
Information Security, vol. 4, no. 1, pp. 2–16, 2005.

[66] H. Loulou, S. Saudrais, H. Soubra, and C. Larouci, “Adapting security
policy at runtime for connected autonomous vehicles,” in 2016 IEEE 25th
International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), pp. 26–31, IEEE, 2016.

[67] M. Leuschel and M. Butler, “Prob: A model checker for b,” in FME 2003:
Formal Methods: International Symposium of Formal Methods Europe,
Pisa, Italy, September 8-14, 2003. Proceedings, pp. 855–874, Springer,
2003.

[68] A. Kassem and Y. Falcone, “Detecting fault injection attacks with runtime
verification,” in Proceedings of the 3rd ACM Workshop on Software
Protection, pp. 65–76, 2019.

[69] H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. Rydeheard,
“Quantified event automata: Towards expressive and efficient runtime
monitors,” in International Symposium on Formal Methods, pp. 68–84,
Springer, 2012.

[70] L. Dureuil, G. Petiot, M.-L. Potet, T.-H. Le, A. Crohen, and
P. de Choudens, “Fissc: A fault injection and simulation secure
collection,” in International Conference on Computer Safety, Reliability,
and Security, pp. 3–11, Springer, 2016.

[71] T. A. Henzinger, “The theory of hybrid automata,” in Proceedings 11th
Annual IEEE Symposium on Logic in Computer Science, pp. 278–292,
IEEE, 1996.

[72] A. David, D. Du, K. G. Larsen, A. Legay, M. Mikučionis, D. B.
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“Uppaal smc tutorial,” International journal on software tools for
technology transfer, vol. 17, pp. 397–415, 2015.

[74] E. M. Hahn, A. Hartmanns, H. Hermanns, and J.-P. Katoen, “A
compositional modelling and analysis framework for stochastic hybrid
systems,” Formal Methods in System Design, vol. 43, no. 2, pp. 191–232,
2013.

[75] R. Lanotte, M. Merro, and A. Munteanu, “A modest security analysis
of cyber-physical systems: A case study,” in Formal Techniques
for Distributed Objects, Components, and Systems: 38th IFIP WG
6.1 International Conference, FORTE 2018, Held as Part of the
13th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2018, Madrid, Spain, June 18-21, 2018,
Proceedings 38, pp. 58–78, Springer, 2018.

[76] I. Jahandideh, F. Ghassemi, and M. Sirjani, “Hybrid rebeca: Modeling
and analyzing of cyber-physical systems,” in Cyber Physical Systems.
Model-Based Design: 8th International Workshop, CyPhy 2018, and 14th
International Workshop, WESE 2018, Turin, Italy, October 4–5, 2018,
Revised Selected Papers 8, pp. 3–27, Springer, 2019.

[77] S. D. D. Anton, A. P. Lohfink, and H. D. Schotten, “Discussing the
feasibility of acoustic sensors for side channel-aided industrial intrusion
detection: An essay,” in Proceedings of the Third Central European
Cybersecurity Conference, pp. 1–4, 2019.

[78] M. Salehi and S. Bayat-Sarmadi, “Plcdefender: Improving remote
attestation techniques for plcs using physical model,” IEEE Internet of
Things Journal, vol. 8, no. 9, pp. 7372–7379, 2020.

[79] H. Yoo, S. Kalle, J. Smith, and I. Ahmed, “Overshadow plc to detect
remote control-logic injection attacks,” in Detection of Intrusions and
Malware, and Vulnerability Assessment: 16th International Conference,
DIMVA 2019, Gothenburg, Sweden, June 19–20, 2019, Proceedings 16,
pp. 109–132, Springer, 2019.

[73] A. David, K. G. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen,
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