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Abstract

Although timed actor-based models have attracted considerable attention in
the recent years, little work exists on analyzing and model checking such
systems. The actor-based language, Timed Rebeca, was introduced to model
distributed and asynchronous systems with timing constraints, and a sup-
porting tool was developed for automated translation of its models to Erlang
(Aceto et al., 2011). The translated code can be executed using McErlang. In
this thesis, we propose extensions for Timed Rebeca to improve the usability
of the language. These extensions besides the timed extensions provided for
the model checker McErlang give us the possibility of model checking and
doing event-based simulation of models for the first time. In addition, we
apply trace-based statistical analysis and visualization methods to simulation
results for reasoning about behavior of models. Examples of writing safety
properties to verify correctness of models and for analyzing behaviors are
provided. The examples and case studies presented in the thesis show the
applicability of the tools and methods introduced.
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Útdráttur

Þrátt fyrir vinsældir og athygli Actor líkana síðustu ára, þá hefur lítið verið
gert til að greina dreifð kerfi sem byggja á eiginleikum þeirra. Tungumálið,
Timed Rebeca, er byggt á Actor líkaninu og var kynnt sem mál til að hanna
líkön sem sýna hegðun dreifðra og samstilltra kerfa með tíma í fyrirrúmi.
Tól sem breytti hönnuninni yfir í Erlang kóða var kynnt sem að svo var keyrt
með því að nota McErlang líkana sannreynara (Aceto et al., 2011). Í þessari
ritgerð er farið yfir nýjar tillögur á breytingum fyrir Timed Rebeca til þess
að endurbæta notagildi málsins. Endurbæturnar gera okkur kleift að san-
nreyna og hermunargreina þessi líkön í fyrsta sinn. Auk þess sýnum við töl-
fræðilegar aðferðir sem nota ummerki í líkaninu sem er undir skoðun hverju
sinni. Aðferðirnar gefa okkur innsýn í breytilega og óútreiknanlega hegðun
líkananna. Farið verður yfir dæmi sem sýna notagildi tólanna og aðferðanna
sem kynntar eru í ritgerðinni.
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Chapter 1

Introduction

Computer systems today are getting more complex and are evolving extremely fast. To-
day’s businesses do not typically succeed without the use of computer system technolo-
gies, which are becoming an essential foundation of every business activity. Networked
communications are connecting millions of devices together using distributed web ser-
vices. A failure in these systems can result in great losses of revenues, unsatisfied system
users, or even cause devastating events that affect human lives.

This results in an increasing need for tools and techniques that help in understanding and
verifying the behavior of these systems. Such techniques provide answers to the ques-
tions of cost, performance and correctness that arise throughout the life of such computer
systems.

The application of model-based engineering technologies to real-time distributed systems
seems to be somewhat untended, yet a useful field that proposes guidelines for how to
do analysis on the behavior of such systems. Model-based engineering guidelines show
how to extract the abstract behavior of the system using a modeling language to build a
model. Following the model creation we can apply analysis methods that give us insights
into behaviors of the model.

Such analysis of software models with simulation has been increasingly used to address
a variety of issues from strategic management of software development to supporting
improvements in software designs. In this project our focus is on network applications
and more specifically on distributed and asynchronous patterns, and the use of simulation
and model checking to analyze them.

Formal methods are mathematically based techniques for developing, specifying, and ver-
ifying software or hardware systems. This is to help software engineers to develop correct



2 Event-based Analysis of Real-Time Actor Models

and reliable systems with precise mathematical models (Holloway, 1997). Civil engineers
for example build mathematical design for buildings before constructing one. This is done
to avoid a collapse of the building. Same should apply when designing software systems.
Many incidences have been reported like the airport baggage-handling system in Denver
which was to be the most advanced baggage handling system in the world. The system
proved to be far more complex than some had originally believed. The problems building
the system resulted in the newly complete airport sitting idle for 16 months while engi-
neers worked on getting the baggage system to work. Estimated losses over 560$M USD
(Calleam, 2008).

Verification of a model is to ensure that a specification is complete and that mistakes have
not been made in implementation of the model. But even though no mistakes have been
made we also need to validate the model. Validation ensures that the model meets its
intended requirements in terms of the methods employed and the results obtained. Its
goal is to make the model useful in the sense that the model addresses the right problem
and provides accurate information about the system being modeled.

In this project we use Timed Rebeca as our modeling language which is an actor-based
language. It provides a simple natural concurrency model, object-based computation, and
timing primitives. The actor-model has been used both as a framework for a theoretical
understanding of concurrency, and as the theoretical basis for several practical implemen-
tations of concurrent and distributed systems (Hewitt, 2010). An Actor is a computational
entity that, in response to a message it receives, can concurrently:

• send messages to other Actors;

• create new Actors;

• designate how to handle the next message it receives.

Not much has been done on analyzing actor-based models with timing constraints. Actors
are being used more in practice as programming languages like Erlang and libraries like
Akka (Typesafe, 2012) are getting more popular.

For verifying Timed Rebeca models we propose the use of McErlang model checker for
Erlang which has in parallel to this project been extended with real-time semantics. McEr-
lang is used because we have an existing mapping from Timed Rebeca to Erlang (Aceto
et al., 2011).

For validating models we propose using performance evaluation techniques by simulating
models with McErlang and analyzing traces generated by the simulation. Simulation is
preferred because formal verification methods typically suffer from state-explosion prob-
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lem, unless the model is changed to be more abstract and to produce feasible state-space
for model checking. In addition, when carrying out validation we do not always know
what properties to look for in the system. Validation is done by using three performance
analysis methods:

• Paired-checkpoint Analysis;

• Periodic Events Analysis;

• and Checkpoint Analysis.

These methods are based on statistical measurements and visualization of the simulated
data of the model. With statistical methods and simulation we get more insights into the
dynamic behavior of the model and how it evolves over time.

Throughout the thesis we show the applicability of our methods using examples and case
studies.

1.1 Contribution

Proposed methods in this thesis are to provide effective and easy analysis methods and
approaches for Timed Rebeca models.

Thesis contributions are:

• Extending Timed Rebeca by adding list data structure and ability of calling custom
functions to overcome the issue of modeling certain behaviors in systems that was
not possible before.

• Extending the mapping to Erlang to support McErlang timed semantics.

– Providing verification of safety properties for Timed Rebeca models.

– Providing us with simulation that follows the semantics of Timed Rebeca.

• Implementing a tool-set that provides analysis methods for Timed Rebeca models.

• Providing experimental results and examples.
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1.2 Overview of the Thesis

The structure of the thesis is as follows: Chapter 2 introduces the concept of model-driven
engineering which contain guidelines that this project follows. In addition we explain
Timed Rebeca and its computational model: the Actor model. Chapter 3 introduces a
mapping to McErlang with timed semantics. This mapping builds a basis for being able
to apply methods used in the following chapters. In addition we propose new extensions
to Timed Rebeca that gives us the ability to model more behaviors in a system. Chapter
4 presents how we use our new mapping to verify Timed Rebeca models with assertion-
based model checking. It explains how we use monitors in McErlang to verify safety
properties as assertions. In Chapter 5 we propose a way to validate models with simu-
lation. The methods proposed uses performance evaluation to gain more insight into the
behavior of models using a simulation and analysis tool-set. Chapter 6 then shows case
studies and experimental results that are gained using methods proposed in Chapters 4
and 5. Related work discussions are in Chapter 7. Finally we present conclusions and
future work in Chapter 8.

Overview of Analysis Methods in the Project
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Figure 1.1: Overview of the project.

Methods applied in this project are called assertion-based model checking and discrete
event-based simulation. The methods can be applied to models written with the model-
ing language Timed Rebeca. Assertion-based model checking is used to verify models
with safety properties. The properties are written in Erlang and are called monitors. Dis-
crete event-based simulation is used for validating models and to gain insights into their
behaviors. This is done with performance analysis and visualization methods.

The overview in Figure 1.1 shows how the verification and the simulation process is car-
ried out. Both methods begin by building a Timed Rebeca model that is translated to
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an equivalent Erlang code. This means that every state in a Timed Rebeca model is as-
sumed (showed by example in this thesis) to have equivalent state in Erlang. When doing
assertion-based model checking we first need to provide a property to check. This prop-
erty should be satisfied in every state of the Erlang program.The property is written in
Erlang and is used by McErlang as a monitor. McErlang is then executed to run the gen-
erated Erlang code along with the monitor, checking if every state of the Erlang code
satisfies the assertion. If any of the states does not satisfy the assertion then the monitor
will return a violation.

Discrete event-based simulation is not based on property checking. To simulate the gen-
erated Erlang code we use McErlang. McErlang generates the output traces. We then
provide three kinds of performance analysis methods to produce statistical information
for the modeler. Besides statistical information, results can be visualized for better under-
standing. This gives us valuable insights into how our models are behaving.
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Chapter 2

Background

2.1 Model-Driven engineering

The field of model-driven engineering focuses on exploiting the abstract behavior of a
system in a model rather than the computational concept (Schmidt, 2006). In today’s
development cycle, bugs tend to cost more depending on the time of the development
(Baier & Katoen, 2008), so having the correct and most efficient model of the system
early in the development cycle is important. In this project, we wanted to offer ways
that help software engineers to design reliable systems. We do this by providing them
with a modeling language that has tools to verify specifications and have the capability
to do performance analysis (with simulation), both that can detect and prevent design
errors early in the life cycle for network applications with distributed and asynchronous
patterns.

The process that we follow in this project is presented on Figure 2.1. It is based on the
model-driven methodology and emphasizes on using an abstraction model of a system.
The model is then used to verify that the design is able to handle our objectives that
are specified in the requirements. The objectives that distributed systems have are often
related to performance, speed, and the correctness of the system. The process has the
emphasis that the model is verified before analysis as the simulation analysis relies on the
model correctness.

Initially we need to have the requirements in place for us to construct a model. The model
needs to catch all the required behaviors which can be a difficult job for the modeler as he
needs to find the right abstraction for the model.
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Abstract
Model

Requirements Revision of
the model

Verify Correctness:
Properties satisfied?

Analyze
Performance:

Performance
requirements satisfied?

Implementation

yes

no

no
yes

Figure 2.1: Evaluation Model

Verification of the model can be exhausting due to the complexity and state-explosion
problem. This makes it often not possible to verify a complex event-based system with-
out some major abstraction methods that reduces the state-space. The verification exam-
ines if the expected correctness properties are met by the model. In general correctness
properties are classified in the broad categories: safety, reachability, and liveness proper-
ties.

When the model has been verified for correctness, the performance evaluation of the
system design can be carried out. This for example can involve response time analysis
methods, which gives the modeler insights into the performance of the system. We attain
response time analysis by using paired-checkpoint analysis which measures time between
checkpoints in the model. Goals or baselines need to be set before the analysis and be-
haviors need to be identified that needs to be evaluated. If the result is not as promised
the modeler can improve the design and evaluate the new design until satisfactory results
are found.
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When the modeler is satisfied with the design of the system the development of the system
can be carried out.

2.2 Actor Model

The Actor model is a mathematical model of concurrent computation that treats actors

as the universal primitives of concurrent computation: in response to a message that it
receives, an actor can make local decisions:

• create more actors,

• send more messages,

• and determine how to respond to the next message received.

Actors have encapsulated states and behavior; and are capable of creating new actors,
and redirecting communication links through the exchange of actor identities (Sirjani &
Jaghoori, 2011).

The actor model was originally introduced by Hewitt (Hewitt, 1972) as an agent-based
language back in 1973 for programming secure distributed systems with multiple users
and multiple security domains. It was later developed into a concurrent object-based
language by Agha in 1986 (Agha, 1986).

In an actor-based system all actors run concurrently and use asynchronous message pass-
ing for communication.

The main positive thing about the actor model is that it is simple, understandable, and easy
to reason about. Erroneous behaviors such as deadlocks are more easily avoided than in
traditional shared state threading. Actors are a higher level of abstraction than threads and
locks. It can be applied to a significant proportion of problems.

2.3 Timed Rebeca

Reactive Objects Language, Rebeca (Sirjani, Movaghar, Shali, & de Boer, 2004), is an
operational interpretation of the actor model with formal semantics and model check-
ing tools. Rebeca is designed to bridge the gap between practical software engineering
domains and formal methods. It does so by providing a simple, message-driven and
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object-based computational model, a language with traditional Java-like syntax, and a set
of verification tools.

A Rebeca model consists of a set of reactive classes and the main program in which
we declare reactive objects, or rebecs, as instances of reactive classes. A reactive class
has an argument of type integer, which denotes the length of its message queue. The
body of the reactive class includes the declaration for its known rebecs, variables, and
methods (also called message servers). Each method body consists of the declaration of
local variables and a sequence of statements, which can be assignments, if statements,
rebec creation (using the keyword new), and method calls. Method calls are sending
asynchronous messages to other rebecs (or to self) to invoke the corresponding message
server (method). Message passing is fair, and messages addressed to a rebec are stored in
its message queue. The computation takes place by taking the message from the front of
the message queue and executing the corresponding message server (Sirjani et al., 2004;
Aceto et al., 2011).

An extension to Rebeca with real-time features was introduced in (Aceto et al., 2011)
with the name Timed Rebeca. In Timed Rebeca we consider a global clock (or more
precisely speaking, synchronized local clocks) for our timed Rebeca models. Methods
are still executed atomically, but we can model passing of time while executing a method.
Instead of a message queue for each rebec, we have a bag containing the messages that
are sent. Each rebec knows about its local time and can put deadlines on the service
requests (messages) that are sent declaring that the request will not be valid after the
deadline (modelling the timeout for a request). When a message is sent there can also be
a constraint on the earliest time at which it can be served (taken from the message bag by
the receiver rebec). The modeller may use these constraints for various purposes, such as
modelling the network delay or modelling a periodic event. Timing primitives added to
the syntax are delay, now, deadline and after. Figure 2.2 shows the grammar for Timed
Rebeca (Aceto et al., 2011).

The following explains the four constructs (Aceto et al., 2011).

• Delay: delay(t), where t is a positive natural number, will increase the value of the
local clock of the respective rebec by the amount t.

• Now: now() returns the time of the local clock of the rebec from which it is called.

• Deadline: r.m() deadline(t), where r denotes a rebec name, m denotes a method
name of r and t is a natural number, means that the message m is sent to the rebec
r and is put in the message bag. After t units of time the message is not valid any
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more and is purged from the bag. Deadlines are used to model message expirations
(timeouts).

• After: r.m() after(t), where r denotes a rebec name, m denotes a method name of r
and t is a natural number, means that the message m is sent to the rebec r and is put
in the message bag. The message cannot be taken from the bag before t time units
have passed. After statements can be used to model network delays in delivering a
message to the destination, and also periodic events.

Model ::= EnvV ar∗ Class∗ Main

EnvV ar ::= env T 〈v〉+;

Main ::= main { InstanceDcl∗ }
InstanceDcl ::= C r(〈r〉∗) : (〈c〉∗);

Class ::= reactiveclass C { KnownRebecs V ars MsgSrv∗ }
KnownRebecs ::= knownrebecs { V arDcl∗ }

V ars ::= statevars { V arDcl∗ }
V arDcl ::= T 〈v〉+;

MsgSrv ::= msgsrvM(〈T v〉∗) { Stmt∗ }
Stmt ::= v = e; | r = new C(〈e〉∗); | Call; | if (e) MSt [else MSt] |

delay(t); | now();

Call ::= r.M(〈e〉∗) [after(t)] [deadline(t)]

MSt ::= { Stmt∗ } | Stmt

Figure 2.2: Abstract syntax of Timed Rebeca (Aceto et al., 2011). Angle brackets 〈...〉 are used
as meta parenthesis, superscript + for repetition more than once, superscript ∗ for repetition zero
or more times, whereas using 〈...〉 with repetition denotes a comma separated list. Brackets [...]
indicates that the text within the brackets is optional. Identifiers C, T , M , v, c, and r denote class,
type, method, variable, constant, and rebec names, respectively; and e denotes an (arithmetic,
boolean or nondetermistic choice) expression.
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2.4 Erlang and McErlang

Erlang is a functional programming language which was developed by Joe Armstrong
in 1986 (Armstrong, 2007). It was originally a proprietary language within Ericsson,
but was released as open source in 1998. It is designed to be a general-purpose concur-
rent programming language for programming real-time distributed systems that are fault-
tolerant and non-stop. Erlang uses concurrent processes to structure the program. These
processes have no shared memory and communicate by asynchronous message passing.
Erlang processes are lightweight and belong to the language, not the operating system.
The concurrency model of Erlang is built on the Actor model.

McErlang is a model checker that replaces the native Erlang runtime engine with a new
one. The model checker has full Erlang data type support, support for general process
communication, node semantics (inter-process communication behaves in a subtly differ-
ent way from intra-process communication), fault detection, and fault tolerance. Because
of the custom runtime engine it is able to capture all program states, taking into account
the distribution, communication and message boxes. This way it can construct a com-
plete state-space of a Erlang program. McErlang offers ability of expressing correctness
properties in the form of monitors (safety or Büchi), abstraction algorithms to reduce
state-space, and exploration algorithms to verify or simulate Erlang programs (Fredlund
& Svensson, 2007).
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Chapter 3

Event-Based Modeling with Timed
Rebeca

The analysis of event-based real-time systems has not been widely studied in a formal
way. These systems have though been used widely in the recent years.

Timed Rebeca design goal is to be a simple and easy-to-use language for modeling con-
current and distributed systems with timing constraints. Its ease of use is to bridge the
gap between the formal community and practitioners. These goals are achieved by using
a simple message-driven and object-based computational model, syntax that is similar to
Java, and a set of tools that provide analysis and verification.

The analysis tools previously offered (Aceto et al., 2011) were the use of McErlang mon-
itors to be able to halt an execution run when something unexpected happens (like a
dropped message). We needed our language and its related tools to provide us with more
variety of analysis techniques.

To provide an effective analysis capability we extended Timed Rebeca and the translation
tool. We extended the language in a way to facilitate analyzing larger set of behaviors
by adding lists as an additional data structure, and also adding the possibility of call-
ing custom functions from native Erlang code. In addition we added tracing capability
to Timed Rebeca models. We obtain traceability by adding the checkpoint construct to
Timed Rebeca and translate it to

• an output function when doing simulation, or

• a McErlang probe when doing verification.
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Before we translate a Timed Rebeca model we need to configure the tool and make it clear
whether we will do simulation or verification. The use of probes is useful when doing
verification in McErlang as they are easily obtainable from a monitor that runs in parallel
with the model. With probes we are able to expose the value of Timed Rebeca variables to
McErlang while there is no well-defined procedure to get the value of program variables
of Erlang programs in McErlang. In simulation we use checkpoints to keep track of the
execution of the model and to define our points of interest for the model.

In the previous work (Aceto et al., 2011), a mapping for Timed Rebeca to Erlang was
introduced. The mapping was also extended for using McErlang tool to do simulations in
an execution-manner. At the time of that work McErlang did not support time in model
checking and all experiments were carried out by using simulation via McErlang. The
simulation was done as an execution via Erlang itself but with support of using safety
assertions as monitors via McErlang. If we choose to do experiments with execution
alternative we have to accept some time slides which is caused by execution of each
statement on a real machine. If a translated Timed Rebeca program runs for long enough
these small time-slides accumulate and cause deviation from the expected interpretation
of the corresponding model based on the formal semantics of Timed Rebeca.

By cooperation with McErlang team (mainly Lars-Ake Fredlund (Fredlund, 2012)), we
extended our Timed Rebeca mapping to be able to use the capabilities of a new imple-
mentation of McErlang which supports model checking of timed systems. The implemen-
tation of timed semantics in the McErlang model checker (Earle & Fredlund, 2012), was
inspired by the semantics in Lamport TLA+ specification language and the TLC model
checker (Lamport, 2005, 2002), but adapted to Erlang.

This approach is referred as the explicit-time approach and is usually representing time
as a value of a variable now and the passage of time is then modeled by a Tick action
that increments now, based on tick rules. These rules define the minimum time between
time values in the model (t1 = 0 ∗ tick, t2 = 1 ∗ tick, ... , tn = n ∗ tick). The timing
constraints are then expressed with timer variables.

In Erlang, all real-time computations are done with receive statements that can include
an after clause. The after clause defines the timeout of the receive as depicted in Listing
1.

The implementation of timed semantics in McErlang had no need for any Tick process or
a timer process to increment the time. Instead the minimum delay is defined in each after

clause inside a receive. In a sense the tick rule is then defined by these after clauses.
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1 receive

2 Pattern1 when Guard1 -> Expr1;

3 ...

4 PatternN when GuardN -> ExprN;

5 after

6 TimeoutValue -> TimeoutExpression

7 end

Listing 1: Erlang syntax of a receive with timeout. The process that includes the receive statement

waits for a message that matches Pattern1, ..., PatternN and Guard1, ... , GuardN . If no

pattern is matched with a received message it will evaluate TimeoutExpression after TimeoutValue

seconds.

3.1 Extending Timed Rebeca

Extending the language without opposing the design goals of Rebeca is a challenge. We
wanted to respect the design goals of Rebeca, and at the same time be able to model real-
time systems with rather complicated behavior that needed to have buffers or queues. We
decided to add lists, a simple yet valuable data type. These lists are unbounded and have
the ability to have integers deleted, added, or removed from them. We also added the
ability to call custom functions that are defined as native Erlang code. Custom functions
give us the freedom of performing operations in a Timed Rebeca model, which could not
be done using the constructs supported by Timed Rebeca itself.

Examples of how to use lists and custom functions in Timed Rebeca can be found in
Listings 34 and 35, located in Appendices A. Both examples show us how to utilize these
new extensions for Timed Rebeca with simple explanations.

In addition to the examples, a modified Timed Rebeca language description is presented
in Appendix D.
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For improving traceability we added the checkpoint function to be able to keep track of
traces in our models and to expose variables within a Timed Rebeca model to McEr-
lang. Checkpoints are twofold, depending on if you are using simulation or model check-
ing:

• For simulation it outputs a given term1 of a checkpoint and the timing of when it
occurs.

• For model checking it generates probes that are written in Erlang and utilized by
McErlang to expose variables within a Timed Rebeca model to verify the model.

Table 3.1 summarizes the extensions and the mapping. In the following we will explain
the extensions and in Section 3.2 we will explain the mapping.

Extension Timed Rebeca Syntax Erlang / McErlang
Lists list<int> N ; → Erlang list data type as a

variable with name N .
Custom Function erlang.func(V1,...,Vn); → Call to function func

with parameters V1,...,Vn.
Checkpoints checkpoint(L,T (,V1,...,Vn)); → Erlang Output Function with

L as the label of the checkpoint,
T as the term
and V1,...,Vn as a
optional tuple of parameter data
which is used when
doing simulation analysis.

*checkpoint(L,T (,T2, ..., Tn)); → McErlang probe with L
as the label of the checkpoint
and T as the term.
Additional parameters are
extending the term
to a tuple of data.

Table 3.1: Abstract mapping structure of extensions for Erlang and McErlang. Where func is
the name of a function, L a label for a checkpoint V as an state or a local variable name and T
as the term of a checkpoint and is of the type integer or boolean expression. When doing model
checking T is used to define a term of the generated McErlang probe. Function marked with (*)
applies when doing model checking translation.

1 In Erlang every piece of data of any data type is called a term and all Timed Rebeca variables are
translated to terms.
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3.1.1 Traceability with Checkpoints and Events

A major factor in Timed Rebeca is the ability to analyze systems and for that we need
traceability. Models that have many non-deterministic behaviors and are often referred to
as complex systems (Lu & högskola, 2010), have behaviors that are not easy to foresee
beforehand. To be capable of tracing or verifying any behaviors, we first want to be able
to trace it with marked events that are "interesting" points in the model. When simulating
the model these points are then obtainable for use in analysis. Also, when translating
for model checking purposes we want the ability of adding labels into appropriate states
within the state-space that McErlang generates. This gives us an easy way to expose vari-
ables within a Timed Rebeca model as there is no well-defined mechanism for retrieving
program variables in McErlang. To do this we added the syntax checkpoint as a marker
which can be placed between any statements in a Timed Rebeca model. Checkpoints have
two mandatory parameters, the label and the term. In addition to the explicit checkpoint

constructs, we can trace the events in our simulation. An event happens when a message
is taken from the queue.

In Listing 2 a simple model that consists of one reactive class CheckpointExample is
shown. It has one rebec proc that is instantiated from the reactive class CheckpointExam-
ple. The initial message server of proc sends a message to itself which triggers a message
iteration of the message server go. The message server go assigns a random number be-
tween 1 and 100 to a variable rand. Note that the checkpoint with the label Start is in
two places in the model: in the initialization of the rebec proc, and when the variable
rand is set to 50 and after the checkpoint with the label Triggered occurs with the term
(second parameter of the checkpoint) rand. This is to be able to measure the time between
checkpoints with the labels Start and Triggered.

1 reactiveclass CheckpointExample(3) {

2 knownrebecs { } statevars { }

3 msgsrv initial() {

4 checkpoint(Start,0); /* Mark start */

5 self.go(); /* Initial call to go */

6 }

7 msgsrv go() {

8 int rand = ?[1:100]; /* Random pick of integer */

9 if(rand == 50) { /* If we get 50 we trigger a event */

10 checkpoint(Triggered,rand); /* Mark Triggered */

11 checkpoint(Start,0); /* Mark Start again */ }

12 delay(1); % Each random assignment take 1 time unit.

13 self.go(); /* Itterate */

14 }

15 }

16 main { CheckpointExample proc():(); }

Listing 2: Timed Rebeca Model - Traceability of Random Values.
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The checkpoints in the model can give us some information. We can identify when the
variable rand is set to 50. Also when using checkpoints as probes, we can verify whether
all assignments are between 1 and 100 by using safety checking monitor in McErlang. To
summarize, using checkpoints improves the analyzability of Timed Rebeca as:

• We can have more precise analysis on simulation runs since checkpoints can be
distinguished from message servers calls and we can use checkpoints to mark inter-
esting points between statements in a sequential computation that happens inside a
message server.

• We can use checkpoints to generate probes, to verify safety properties with McEr-
lang.

In the following chapters, we propose some novel techniques to help the modeler to gain
insight into the dynamic behavior of a complex event-based simulation model based on
trace analysis. Traces are generated by the simulation processes each time a checkpoint
occurs or when a message is taken from a message bag of a rebec (taking a message from
the bag is an event). The information included for events are: message sending time, mes-
sage arrival time, if the message is expired, rebec name, message server name, parameters
of the message, and the sender of the message. For checkpoints, the information included
are; time of the checkpoint, rebec name that included the checkpoint, and the parameters
that we pass to the checkpoint. The first parameter that is mandatory is the label of the
checkpoint; and we call the rest of the parameters that are optional the terms. The terms
can be any variable or expression in the model and help us to get more information for
our analysis.

We will also explain how we are able to use checkpoints to implement safety checking of
some behaviors in a model with McErlang monitors.
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3.2 Mapping of Timed Rebeca to McErlang’s Timed Se-
mantics

Timed Rebeca execution relies on the mapping to Erlang, which is a general-purpose
concurrent programming language for developing real-time, distributed and fault-tolerant
systems. The concurrency in Erlang is built to follow the Actor model (Hewitt, 1972). Er-
lang uses concurrent processes to structure the program. These processes have no shared
memory and communicate by asynchronous message passing. Each process is created
using the built-in function spawn(Fun). It creates a process with an identity, that we call
Pid and evaluates the function Fun. All communications between processes in Erlang are
message-based communications and are sent by using Pid ! Message, where each Mes-

sage can be any of Erlang expressions or a term2 and Pid is the identity of any process
within the program. Each message acts as a pattern that matches a receive clause within
a process.

To summarize, the concurrency primitives in Erlang are:

• Pid = spawn(Fun): creates a process and evaluates the given function Fun

• Pid ! Message: sends the message "Message" to the process with the identity Pid

• receive ... end: receives a message that has been sent to the process that evaluates
it.

Erlang handles time with the use of after as a timeout clause in a receive statement as
Listing 1 shows. When a process reaches a receive expression it looks for the oldest
message in the mailbox of the process and matches it with any of the patterns Pat1,
... , PatN also checking the guards Guard1, ... , GuardN . If no pattern is matched and
TimeoutValue is reached then the expression TimeoutExpression is evaluated. The process
looks in the queue each time a message arrives until the timeout occurs.

Formal semantics and a first implementation, as an automatic translation mapping of
Timed Rebeca to Erlang, were introduced in (Aceto et al., 2011). This mapping was
also extended to be used with McErlang, which provided an execution of a given Timed
Rebeca model with the support of a monitor that could halt the execution if the assertion
included in the monitor is violated.

In this project we extended the current mapping to be usable with timed semantics for the
model checker McErlang (Earle & Fredlund, 2012). The new timed semantics offered
support for timing primitives in Erlang as it was not supported in the previous versions.

2 In Erlang every piece of data of any data type is called a term.
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This project is done in tight cooperation with the author of the new implementation of
McErlang (Fredlund, 2012).

An abstract mapping is shown in Table 3.2, which shows how each entity of Timed Rebeca
is mapped to Erlang.

Timed Rebeca Erlang
Rebeca model → A set of functions
Reactive class → Three functions
Known rebecs → Dictionary of variables
State variables → Dictionary of variables
Message server definition → A match in a receive expression
Local variables → Dictionary of variables
Message send statement → Message send expression
Message send w/after → Message send expression inside a receive

with a timeout
Message send w/deadline → Message send expression with the deadline

as a parameter
Delay statement → Empty receive with a timeout
Assignment → Dictionary update
If statement → Case expression
Nondeterministic selection → Random selection in the simulation tool
Checkpoints → Function
Custom Function → Function

Table 3.2: Structure of the mapping from Timed Rebeca to Erlang (Aceto et al., 2011). The
timing primitive now() was omitted from Timed Rebeca grammar as we do not use local time due
to implementation of relative time. Newly added constructs are added, namely checkpoints and
custom functions.

The mapping is essentially the same and is still only providing a translation of a sub-
set of Timed Rebeca operational semantics (rebec creation is not supported). Changes
were though made regarding the use of time, timeouts, and how we handle events, and
checkpoints. Note that although McErlang now supports model checking of timed Erlang
programs, it does not match the Timed Rebeca formal semantics in a straight forward
way, as the computational model is different in many ways. In the following subsections
we will go into details of what was changed and how we were able to tailor McErlang to
our needs.
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3.2.1 Mapping Extensions

The former proposed extensions were added to the structure of the mapping shown in
Table 3.2. In Timed Rebeca, lists are additional data structures and custom functions are
Erlang functions that return an expression.

Checkpoints can be used for two purposes and can be mapped to different functions.
When doing simulations the mapping provides us with an output function that allows the
ability to collect Timed Rebeca expressions or variables while simulating. As when doing
verification, the mapping will generate McErlang probes3 that can easily be accessed from
formerly mentioned monitors in McErlang. Checkpoints have one mandatory parameter,
label, and optional parameters as terms. In simulation the terms provide more information
while generating checkpoint traces. In model checking all the terms are put together as a
tuple.

3.2.2 Timing features

The foundation of using the timing features in Timed Rebeca mapping to Erlang was the
usage of the system time. In Timed Rebeca semantics, the expression now() returns the
value of the local clock of a rebec and is used for

• tagging a message when it is sent with the local time of the sender rebec,

• determining the global expiration time of a message before it is sent, and

• evaluating message expiration times based on the local time of the receiver.

The local time of a rebec is obtained with the built-in function timestamp() in Erlang
which is the system time. This can cause noticeable problems in model checking as
every time we use it we obtain a new unique local time from the timestamp() function.
The system time is presented as a tuple {MegaSeconds, Seconds,MicroSeconds} in
Erlang, which is the elapsed time since 00:00 GMT, January 1, 1970.

When a message is being sent between rebecs, this system clock value is saved into the
program state generated by McErlang, in the form of a message parameter. This param-
eter will always be unique since when time passes we get a new unique value from the
function. This means for a non-terminating model, we will undoubtedly always have
unique values inside all states that include sending messages. Therefore the number of

3 Probes are Erlang functions that inject information into a generated program state, readable by McEr-
lang.
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program states generated by McErlang will be unbounded and not feasible for model
checking.

To address this problem, we utilized newly presented clock references from McErlang
in the corresponding Erlang code instead of using timestamp() function. The clock ref-
erences can relate to clocks in theory of Timed Automata and are initiated and reset to
generate finite state spaces for models (Alur & Dill, 1994). In Timed Rebeca code, when
a message is sent, a clock reference is created in the translated Erlang code. Relative
time is acquired by using the new API mce_erl_time in McErlang. It has the following
functions:

• now(), returns the current time.

• nowRef(), stores current time in a global reference.

• was(Ref ), returns the stored time reference Ref.

• forget(Ref ), removes the stored time reference Ref (time will not be increased in
future states).

When a clock reference is created, its initial value will be {0, 0, 0} to make it compatible
with normal time format in Erlang. In Timed Rebeca we use the time domain as the set of
natural numbers (N), which is then used in after, delays and deadlines. In the translated
code we need to translate these values to be compatible with McErlang. We denote the
translated values as Nerlang. For example when using after(1) in Timed Rebeca, the
translated value will be {0, 0, 1}.

In the following paragraphs, we go into the details how we used McErlang’s new timed
API mce_erl_time to exclude the usage of timestamps in Erlang.

In the modified mapping we considered remembering the time only to be crucial when
sending messages with the deadline construct. This is to be able to evaluate the message
and to know if the message is expired or not. It is mandatory to know the sending time to
be able to evaluate it to local time of the receiver.

Each send statement in Timed Rebeca can have timing primitives after (message delay,
before sending) and deadline (message expiration time) that are explained in (Aceto et
al., 2011). Communications between rebecs in Timed Rebeca, are translated as a process
communication in the translated Erlang code. Formerly in the translated code, the sender
process used the local time of when the message was sent and included it in the message
that was being sent. This was included in the message for the receiver process to be able
to compare the message send time to it’s local clock of when the message arrived, seeing
if the message is expired or not. The change was made in the translation and we added
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formerly discussed clock references instead of local time before sending the message.
This reference is sent as a message parameter which is denoted as TT in Listing 3.

1 messagesend(Sender, Rebec, Msg, Params, Deadline) ->

2 % Start a clock reference and save it to TT

3 TT = nowRef(),

4 spawn(fun () ->

5 Rebec ! {{Sender, TT, Deadline}, Msg, Params}

6 end).

Listing 3: Pseudo McErlang Message Send

The clock reference is remembered and referenced in all future states of the model, until
it is stopped with the forget() function. To have finite state graphs this clock reference
needs to be stopped right after the message had been evaluated by the receiver process.
This is presented in Listing 4.

Expiration of a message in the translated code is handled by comparing the sending time
of the message to the local time of the current process. Instead of the local time, we
check the clock reference. For doing that we use the was function in McErlang. When the
destination process in Erlang receives a message, it will evaluate the message expiration
time with the expression (was(Ref) + Deadlineerlang), where Ref is the sending time of the
message in a form of a clock reference and Deadlineerlang is the relative deadline value
converted to Erlang compatible time-stamp.

1 receive

2 {StateVars, _}

3 = {{Sender, TT, DeadLine}, msgsrv, {Params}} ->

4 % Evaluate Deadline = inf or Deadline + was(TT) < statetime()

5 true -> % Not expired.

6 % Forget TT clock reference.

7 {StateVars, LocalVars}

8 false -> % Expired.

9 % Forget TT clock reference.

10 {StateVars, LocalVars}

11 end,

12 end.

Listing 4: Pesudo McErlang Evaluation of a Message

In Timed Rebeca, when a rebec takes a message from the message bag it compares the
sending time of the message with the deadline. In the translated code this is done by
using the timed McErlang API and by adding the message parameters Deadlineerlang to
the clock reference TT and comparing it to the current state time. mce_erl:now() returns
the current state time of the state and returns {0,0,0} if no clock has been initiated. A
message server mapping function is presented in Listing 4. If the comparison shows
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that the deadline is not yet passed then it will automatically use the true clause of the
case clause. Otherwise it will be dropped due to a message expiration using the false
clause.

3.2.3 Support for Timed Semantics

Mapping of Timed Rebeca to McErlang had some adaptation and challenges. The McEr-
lang model checker is designed to verify Erlang programs. Erlang programs are based on
the same concurrency model as Timed Rebeca (the actor model). But it still does not have
the same computational interpretation.

1 ProccessOne = spawn(process, function, [1]),

2 ProccessTwo = spawn(process, function, [2]).

Listing 5: Erlang spawning processes. Processes are spawned with the Pid ProcessOne and

ProcessTwo. Parameter for the spawn function respectively account for a parent process, a function

to evaluate for the process, and a parameter to give to the function.

In Listing 5, the two processes are concurrently executed. So, when running a program
like this in Erlang there is nothing that prevents ProccessTwo to run faster than Procces-
sOne, so in order to check all possible paths of the computation we need to check for all
executions:

• If ProcessOne is spawned before ProcessTwo,

• if ProcessTwo is spawned before ProcessOne, and

• if ProcessOne and ProcessTwo are spawned at the same time.

That would also be the case in untimed Rebeca or when two events are happening exactly
at the same time.

In Timed Rebeca when we have a delay or after we want to respect the progress of time
strictly. A naive mapping to Erlang could overlook this problem. In Erlang no order
of execution is respected based on delays. So we had to use the urgent constructs of
McErlang in our mapping.

In the following paragraphs we want to show with examples how our mapping works by
generating a state-space with McErlang.

Implementation illustrated with an example. To demonstrate the problem above, a
scenario is presented in the form of a Timed Rebeca model in Listing 6, which models two
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competing processes that are trying to get acknowledged by a listener that only responds
once. For simplification purposes for the reader, an abstracted Erlang translate was created
and is presented in Listing 38 located in Appendices A. The state graph that McErlang
generated for the model is presented in Figure 3.1 as a Labeled Transition System.

1 reactiveclass Process(2) {

2 knownrebecs { Listener lsnr; }

3 statevars { boolean acknowledged; }

4

5 msgsrv initial(int delaybeforesend) {

6 acknowledged = false;

7 delay(delaybeforesend);

8 lsnr.receive(delaybeforesend);

9 }

10

11 msgsrv ack(boolean processed) {

12 acknowledged = true;

13 trace(isProcessProcessed, processed);

14 }

15 }

16

17 reactiveclass Listener(2) {

18 knownrebecs { Process proc1; Process proc2; }

19 statevars { boolean received; }

20

21 msgsrv initial() {

22 received = false;

23 }

24

25 msgsrv.receive(int delaylabel)

26 {

27 // Note: Only receives once

28 if(received == false) {

29 received = true;

30 sender.ack(true);

31 }

32 }

33 }

34 main {

35 Listener listener(process1,process2):(); % Listener that only processes one message

36 Process process1(lsnr):(2); % Delays by 2 before sending

37 Process process2(lsnr):(3); % Delays by 3 before sending

38 }

Listing 6: Timed Rebeca Model - Competing Processes

The model consists of two reactive classes, Process and Listener. It has 3 rebecs: listener

that is instantiated from the reactive class Listener, process1 and process2 that are both
instantiated from the reactive class Process. The rebec listener starts by waiting for a
single reply from the rebecs process1 or process2. The initialization of the rebec process1

delays by 2 time units before sending a message to the rebec listener while the second
rebec process2 delays by 3 time units before sending a message.
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From the Timed Rebeca semantics, the obvious computation would be that process1 that
delays by 2 time units would be the one sending the first message and therefore rebec
listener would reply to him first. Following that the rebec process2 that has a delay of 3

time units would send a message to the rebec listener and get no reply back.

A generated state graph (Labeled Transition System) by McErlang is shown in Figure 3.1
and presents each program state as a node with a number as the label. The state graph
shows that a path exists for both processes to get a reply. This can be seen from the
transitions (messages) 0 → 7 and 0 → 6. For the Timed Rebeca model the branching
transition 0 → 6 must not occur when exploring states in the model. This is because the
transition has a path which ends having the possible transitions (messages) 5 → 4 and
6 → 1 where in both cases, process2 gets acknowledged. This means that some paths
in the model end up as replying to the process that delays by 3 time units. We therefore
needed special care in our mapping to McErlang to follow the formal semantics of Timed
Rebeca. Furthermore the transitions (messages) 7→ 3 and 3→ 4 should not be possible
as it means that process2 can send a message before process1 gets acknowledged. This
should not be possible as no delay is assigned to the acknowledge message.
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Figure 3.1: Labeled Transition System (state space) for the competing processes model in Listing
6. Each state in the transition system does not have an equivalent state in Timed Rebeca as it is
not a correct implementation.
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When looking at the state graph in Figure 3.1, we see two problems that need solving.
The problems are because Timed Rebeca semantically demands,

• urgency to all messages without timeouts (message without after or delays in Timed
Rebeca) to only have the possibility of happening instantaneously, and

• that messages with timeouts (message that have delays and afters in Timed Rebeca)
need to only occur immediately after the timeout and need to be ordered based on
their timeouts.

For the first problem we have to exploit the urgency feature of McErlang. From the
work presented in (Earle & Fredlund, 2012), it is explained that by using urgency we are
able to define a maximum waiting period until a timeout happens. Therefore we want to
assign urgency with 0 as the maximum waiting time on all receive primitives that have
no timeout clauses in Erlang. This makes all non-timed message passing (actions) in the
translated code to only happen instantaneous, or "infinitely fast" as it is referred to in
McErlang. Furthermore, the semantics of McErlang state that the time cannot advance if
there is a transition (message) enabled from a program state with maximum waiting time
of 0.
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Figure 3.2: Labeled Transition System (state space) for program states for the competing pro-
cesses model in Listing 6 with maximum delay as 0 for message with no timeout clauses (no after
or delays in Timed Rebeca). Each state in the transition system does not have an equivalent state
in Timed Rebeca as it is not a correct implementation.
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When using this we have a different state graph depicted in Figure 3.2. This graph shows
that by example using urgency, solves the problem for messages that have no timeouts (no
delays or after in Timed Rebeca) but not for messages with timeouts.

Considering the first transition system (state graph) in Figure 3.1 with the second transi-
tion system (state graph) in Figure 3.2 we see that when a acknowledge message is sent,
it only occurs once for each path in the graph. This is because now we only explore
possible paths with 0 as the maximum timeout, when doing non-timed message passing
(actions).

The second problem is still an issue. The transitions (messages) 0→ 5, 5→ 2 and 3→ 1

should not be possible. They are messages (actions) with timeouts in the translated Timed
Rebeca code and McErlang still checks for all possible executions for them.

The formal timed semantics of McErlang is presented in (Earle & Fredlund, 2012). The
operational semantics explain a transition relation for the enforcement of urgent constructs
with taking into account the progress of time. An Erlang function is defined that calculates
a reduced set of transitions that are also compatible with using clock references discussed
in former section. This function, namely timeRestrict has an argument of

• list of already reduced transitions,

• current state time,

• list of non-timeout transitions,

• time of the next most urgent transition that is to be taken, and

• list of enabled transition that is to be executed before the next urgent transition.

The function is evaluated between states and providing a way to order actions marked
urgent based on timeout value in enabled receive statements. Using urgent on message
(action) with timeout is therefore supported and gives us ability to set the maximum delay
for receive clauses. For Timed Rebeca models it makes us capable of ordering the explo-
ration of states based on time units given to delays (translated to receive statement with
an after clause). This means that in Timed Rebeca delay(2) will end one time unit before
delay(3) if they start at the same time in the translated Erlang code.

Using this we altered the translated delay statement as depicted in Listing 7.
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1 timedelay(Milliseconds) ->

2 mce_erl:urgent(Milliseconds), % Mark transition as urgent.

3 receive

4 after (Milliseconds) -> ok

5 end.

Listing 7: Erlang Program - Urgent delay

This gives us a transition system (state graph) that shows a single computational path
where process1 sends a message and gets a reply from listener followed by process2

sending a message and getting no reply. All nodes in the transition system generated by
McErlang then have equivalent states in Timed Rebeca. Thus giving us the correct behav-
ior of exploring states and shows by example that we have successfully used McErlang to
be able to verify the Timed Rebeca model.

Another Timed Rebeca model (non-deterministic process evaluator) is presented in List-
ing 37 located in Appendices A. There we explore expirations and non-deterministic be-
haviors of Timed Rebeca and show that our mapping works as a fine-grained mapping for
models provided in Timed Rebeca.

3.3 Discussion

In this section we successfully implemented an extended translation mapping from Timed
Rebeca to McErlang with timed semantics. It should be noted that the mapping proposes
a fine-grained mapping of Timed Rebeca as the formal definition of Rebeca computation
is to take place by taking the message from the front of the message queue and executing
the corresponding message server atomically (Sirjani et al., 2004). The atomicity of the
computation is not followed as demonstrated in Figure A.1, when branching to transitions
(messages) 12 → 6 and 12 → 14. Both can happen at the given time and therefore both
possibilities are explored. This mapping also provides us with a challenging question:
whether each state generated by McErlang from the Erlang code has an equivalent state
in Timed Rebeca. This could be checked formally by showing weak bisimulation for
generated states for both languages.
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Chapter 4

Assertion-Based Model Checking

Model-based verification techniques are based on models describing a possible behavior
of a system in an accurate and unambiguous way. The design is typically constructed
with a modeling language. Furthermore, the verification technique of our concern, model

checking, is typically the process of exploring the state-space of a model in a brute-force
manner where all reachable system states are considered. The process verifies whether the
given model meets a given specification. Specifications often contain safety requirements
such as the absence of deadlocks or whether states that cause the system to crash are
reached. This way it can be proven whether a given model satisfies or violates a property
with absolute certainty (Huth & Ryan, 2004; Baier & Katoen, 2008).

This chapter explains an approach to verify Timed Rebeca models with safety specifica-
tions. The verification is done by using the model checker McErlang that has recently
been extended with timed semantics. With the mapping explained in Chapter 3 we are
able to carry out a complete state-space generation of Timed Rebeca models. In Chapter
3 we explained the concept of using McErlang probes and monitors. This project uses
assertive monitors that are written in the programming language Erlang. Monitors are
used to build safety properties for Timed Rebeca’s generated Erlang code. Checkpoints
in Timed Rebeca are mapped to McErlang probes as explained in Table 3.1. To facilitate
the modeler’s task of building specifications, a template is proposed. This template is
used for detecting checkpoints in a Timed Rebeca model.

Verifying safety properties is the first step in verifying Timed Rebeca Models.
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4.1 Safety Checking with Monitors and Checkpoints

The exploration of the state-space involves building all possible states and the transitions
that connect them. In McErlang, when generating a state, each state keeps some informa-
tion from the program state which is observable by monitors. The information available
from the program states are invariant state components, such as process mailboxes, pro-
cess status, process name and process dictionaries. This is observable from the program-
ing interface of McErlang and does not have any well-defined mechanism for retrieving
the value of program variables from a program state (Earle & Fredlund, 2008).

To facilitate observation of state variables and local variables in Timed Rebeca, we use
the method of probing program states in McErlang. This is done by using a probe action
which is a function that has the arguments label and term. Probes make the internal
state of a program visible to the model checker. These probes are easily accessible from
monitors.

In Timed Rebeca, we use checkpoints to specify the points in the model where we want
to know the values of certain variables at run-time (simulation or model checking). When
doing model checking, checkpoints are translated to McErlang probes as explained in
Table 3.1. Using probes gives us a way of exposing state and local variables in the Erlang
code by passing them as an argument (the term) of the probe. This allows the modeler to
construct monitors based on probes as shown in Listing 9. Note that probes as shown in
Listing 9 are translated from checkpoints in a Timed Rebeca model as in Listing 8.

1 ...

2 checkpoint(id1,exp1);

3 checkpoint(id2,exp2,exp3);

4 ...

Listing 8: Timed Rebeca Model - Checkpoint example

1 ...

2 mce_erl:probe(id1,exp1),

3 mce_erl:probe(id2,{exp2,exp3}),

4 ...

Listing 9: McErlang translation of checkpoint example in Listings 8

In Listing 9 we have two probes; one with the label id1, and the other with id2. The
expression(s) (exp1,exp2 and exp3) passed to each checkpoint can then be retrieved
by a monitor as shown in Listing 10.
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The monitor code depicted in Listing 10 checks if any process is at the point with a
probe with the Label Identity. If this is true, the monitor retrieves the values of the
expressions passed to the probe (Line 3 of Listing 10). In the rest of the monitor you
can see how the monitor can decide based on these values. If the Expression in the probe
depicted on line 2 in Listing 9 is 5, the monitor will halt the verification process displaying
a violation with the message violation_termIsFive.

1 % Check if state has any checkpoints with the Label

2 case has_probe_with_label(id1,StateActions) of

3 {true,RetrievedTerm} -> ManipulateTerm(RetrievedTerm);

4 false -> {ok,noCheckPointFoundWithLabel}

5 end.

6

7 % Function that does something with the retrived term

8 ManipulateTerm(TermRetrived) ->

9 case TermRetrived == 5 of

10 % Violate if term is equal to 5.

11 true -> {violation_termIsFive,TermRetrieved};

12 % Satisfy term if not 5.

13 false -> {ok,satisfied}

14 end.

Listing 10: Pseudo code of a monitor that retrieves a term of a checkpoint. When

McErlang evaluates has_probe_with_label the RetrievedTerm is returned as the

term of the probe. The term is then passed (if found) as an argument to the function

ManipulateTerm. The variable StateActions has all actions from the current invariant

state of the program, such as process mailboxes, process status, process name and

process dictionaries (checkpoints are included as actions in the program state).

When a monitor is set to execute with a translated Timed Rebeca model, we are running
it in parallel in a lock-step manner with the model.

Translated Model || Monitor

That is, when the program takes a step, the model checker makes the monitor to take a
step. The monitor will then evaluate the functions defined in the monitor with the program
state as an argument. This will lead to either satisfied results, meaning that the current
state is not violated by the property defined in the monitor or by halting the verification,
signaling a violation. Monitors work like asserted safety observer that run in parallel
with the model and are executed every time a state is generated. There are two types
of monitors in McErlang, safety monitors and Büchi monitors which implement Büchi
automata. Using Büchi monitors allows McErlang to check LTL properties using the
automata as the specification (Svensson, 2009). However, in this project we only explore
safety specifications using safety monitors.
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Monitors are Erlang modules which export three functions; init, stateChange and moni-

torType of arity 1, 3 and 0, respectively (Fredlund & Svensson, 2007) (Earle & Fredlund,
2008).

• init is called when the monitor is started, at the beginning of the verification process.

• stateChange is the function that is called by McErlang (by simulation or model
checking algorithm) using three parameters:

– ProgramState

– MonitorState

– VerificationStack

• monitorType specifies what kind of monitor is running, which is in our case always
a safety monitor.

When we do verification based on checkpoints in a Timed Rebeca model, we use the
VerificationStack which is given to the stateChange function each time a translated model
takes a step in an execution. From the VerificationStack we can then obtain all possible
probes (generated from checkpoints in Timed Rebeca) in a model and evaluate them with
McErlang monitors.

The verification process of a model can only have one monitor asserted at each time.

4.2 Safety Specifications

In Chapter 3 we explained how we adapted McErlang to be able to explore a state graph
of a Timed Rebeca model based on the formal semantics of Timed Rebeca explained in
(Aceto et al., 2011).

After extending the mapping to support the timed semantics in McErlang, we had a cou-
ple of predefined safety monitors. These monitors provide us with valuable safety checks
and thus extend the operability of analyzing timed models in Timed Rebeca. Next sec-
tions explain how we use safety monitors and how we use them with our newly proposed
checkpoints.
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4.2.1 Deadlock Detection

An important property can be checked for non-terminating critical systems deadlock. A
deadlock verification monitor in McErlang is shown in Listing 12. So, this monitor guards
against program deadlocks by viewing the process status. If the status of the process is
marked as "blocked" the process is considered deadlocked. This monitor then guarantees
deadlock freedom within a non-terminating Timed Rebeca model.

1 reactiveclass DeadlockingExample(3) {

2 knownrebecs { DeadlockingExample proc; }

3 statevars { }

4

5 msgsrv initial() {

6 proc.go();

7 }

8

9 msgsrv go()

10 {

11 /* Random pick of integer */

12 int rand = ?(1,2,3,4,5);

13

14 delay(1);

15

16 if(rand != 5) {

17 sender.go();

18 }

19 }

20 }

21

22 main {

23 DeadlockingExample proc1(proc2):();

24 DeadlockingExample proc2(proc1):();

25 }

Listing 11: Timed Rebeca Model -

Deadlocking Rebecs

1monitorType() -> safety.

2

3init(State) -> {ok,State}.

4

5stateChange(State,MonState,_) ->

6case is_deadlocked(State) of

7true -> deadlock;

8false -> {ok, MonState}

9end.

10

11is_deadlocked(State) ->

12State#state.ether =:= [] andalso

13case mce_erl:allProcesses(State) of

14[] -> false;

15Processes ->

16case mce_utils:find(fun (P) ->

17P#process.status =/= blocked end,

18Processes) of

19{ok, _} -> false;

20no -> true

21end

22end.

Listing 12: McErlang - Deadlock monitor

Example of a deadlock in Timed Rebeca. Timed Rebeca model provided in Listing
11 demonstrates a deadlock. The model presents two rebecs; namely proc1 and proc2. In
the initialization methods they send one another a message. Both, then send a message
back only if the variable rand is not 5. This variable is randomly assigned with the
integer 1 to 5, and will account for a path where none of the rebecs will send a message
back. This model will therefore end in a deadlocked scenario when having all of states
explored.

Verification of the example presented in Listing 11, took McErlang 0.010 runtime seconds
to halt the model checking process showing a deadlock. But soon as we altered the if
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clause to rand ! = 6 the verification terminated normally with no-deadlock. The state
space had 444 states and 818 transitions and was explored in 0.210 seconds. It should
be noted that running the monitor on a terminating Timed Rebeca model will always end
by violating the deadlock freedom. This is because each rebec in our translated code
is always listening for new messages and when message passing ends, the monitor will
notify that we have a deadlock.

4.2.2 Maximum Queue Detection

One of the things that was hard to implement in the mapping of Timed Rebeca was the
restriction on queue of a rebec. From (Sirjani et al., 2004) it is explained that Rebeca
needed to disallow unbounded message queues due to abstraction techniques to make the
models finite. This safety check will however give the modeler the possibility of checking
for maximum queue length of a rebec, which in some cases is useful.

Example of a queue overflow in Timed Rebeca. Presented Timed Rebeca model in
Listing 13 depicts a model that has the possibility of exceeding its bounded queue which
is in this example set as 2. The monitor is then presented in Listing 14.

The Timed Rebeca model has two rebecs, named proc1 and proc2. Each rebec will start
by sending a message to the other rebec. Then both delay with a non-deterministic choice
of 1 or 2 time units. This will have the effect that at some point both of the processes
could have 3 messages in its message bag. This is because when a rebec executes the
message server go(), it sends two messages to the sender.

1 reactiveclass QueueViolation(2) {

2 knownrebecs { QueueViolation proc; }

3 statevars { }

4 msgsrv initial() {

5 /* Send first message */

6 proc.go();

7 }

8 msgsrv go()

9 {

10 /* Delay by 1 or 2. */

11 delay(?(1,2));

12 /* Send two messages */

13 sender.go(); sender.go();

14 }

15 }

16 main {

17 QueueViolation proc1(proc2):();

18 QueueViolation proc2(proc1):();

19 }

Listing 13: Timed Rebeca Model - Queue

Violation

1monitorType() -> safety.

2

3init(MaxQueueSize) -> {ok,MaxQueueSize}.

4

5stateChange(State, MaxQueueSize, _) ->

6case mce_utils:find

7(fun (P) -> length(P#process.queue) >

MaxQueueSize end,

8mce_erl:allProcesses(State)) of

9{ok, P} -> {exceeds, P};

10_ -> {ok, MaxQueueSize}

11end.

Listing 14: McErlang - MaxQueue monitor
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When using the monitor presented in Listing 14, we need to provide it with a MaxQueueSize
parameter that defines what the maximum size of a queue is. The model provided in List-
ing 13 was verified with MaxQueueSize set as 2. The exploration violated the monitor
with the shortest path of 29 states and 28 transitions after 2.180 seconds. This occurs at
time 2 when one of the processes delayed by 2 and the other one by 1, therefore one of
them ended by having 3 messages inside its message bag. If the model is to be checked
with MaxQueueSize as 3, the monitor will be violated after exploring 5577 states and
7384 transitions. This took McErlang 17 seconds, to verify. This is normal as there is a fi-
nite path in the model state-space that leads to a process to have infinitely many messages
in its message box.

4.2.3 Timed Rebeca Checkpoint Monitor

The main purpose of checkpoints, when model checking in Timed Rebeca is to be able
to make it easier for the modeler to verify certain safety properties. To do that a monitor
template is created in this project. An example of using the template is depicted in Listing
15.

1monitorType() -> safety.

2

3init(_) -> {ok, satisfied}.

4

5stateChange(_,satisfied,Stack) ->

6% Monitor Setup

7% Usage: checkpoint(Label,Term);

8% Note: Dropped message have "drop" label so its not needed.

9CheckpointLabel = checkpoint_label, % Not needed for checking expired message probes.

10CheckpointTerm = not_applicable_when_using_checkLabelCheckPoint,

11% EOF

12

13Actions = actions(Stack),

14checkLabelCheckPoint(Actions, CheckpointLabel).

Listing 15: Pseudo Timed Rebeca checkpoint monitor for McErlang (Template)

The monitor depicted in Listing 15 shows how to detect if a checkpoint occurs in any
path in the model. It uses one of the predefined functions checkLabelCheckPoint
which takes an argument of a checkpoint label. The monitor then returns satisfied if no
checkpoint with the specified label occurred in the state, otherwise it will halt with a
violation. If the verification terminates without a violation, we are guaranteeing that the
checkpoint never happens in any paths of the model.
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The monitor has two parameters; label of the checkpoint (CheckpointLabel) and the
term (CheckpointTerm) which is not necessarily used in all the functions predefined
in the monitor. These parameters and the following predefined functions make it easier
for the modeler to write their safety specifications. The following functions are defined
in this project to make it easy for the modeler to write the specification without dealing
with complexity of writing McErlang monitors from scratch. The functions available
are;

• Checking if a dropped event happens for a message server, because of the deadline.

– checkDropMsgsrv, with arity of two; actions in a state and a message
server name.

• Checking if a checkpoint occurs.

– checkLabelCheckPoint, with the arity of two; actions in a state and a
label of a checkpoint.

• Compare the checkpoint term with an integer or boolean.

– checkTermMaxValue, with the arity of four; actions in a state, checkpoint
label, term and a maximum value of the term.

– checkTermMinValue, with the arity of four; actions in a state, checkpoint
label, term and a minimum value of the term.

– checkTermValue, with the arity of four; actions in a state, checkpoint la-

bel, term andd a value which the term should be equal to (boolean or integer).

Full description of the monitor is presented in Listing 40 located in Appendix C. The
monitor will be the basis for writing safety specifications for Timed Rebeca.
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4.3 Discussion

This Chapter presents the first step in safety verifcation of models written in Timed Re-
beca. Properties are written in Erlang and are hard to write without Erlang knowledge. We
use checkpoints in Timed Rebeca and map them to McErlang probes when we do trans-
lation to Erlang. Probes expose program variables to be used with McErlang monitors.
Timed Rebeca monitor was presented and makes it easier to write simple properties. In the
future we want to have special property language that goes along with the Timed Rebeca
model. The properties would then be translated to Erlang to form the monitors.

Note that a full version of the monitor template is presented in Listing 40, located in
Appendix C.

Models can be faulty and result in Zeno effects, or other cycling behaviors. Static analysis
of models before verifying is useful as even the smallest models could produce infinite
system states in the generated Erlang code.
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Chapter 5

Discrete-Event Simulation Approach

Simulating a system that has many possible outcomes is a process of generating the non-
deterministic behaviors of it and gather data from the simulation over a period of time.
Models that have these settings are hard to predict as they evolve with time. Simulat-
ing abstract behaviors of a system can help with estimating how the system will evolve
with simple statistical methods applied on the data generated from the simulation pro-
cess.

Discrete-event simulation (DES), is representing the operation of a system as a chrono-
logical sequence of events. Each event occurs at a certain time and marks a change in the
system model (Robinson, 2004). In this project we define these events when a message is
taken from a message bag of a rebec or when a checkpoint is executed in the model.

The generated data for a model can contain multiple simulations and each simulation can
contain many traces. To evaluate these traces, we need methods for extracting informa-
tion out of the generated data set. The information is then used to reason about some
behavioral features of the model. This is done with tools that support analysis of the
generated data, and offer what we refer to as discrete event simulation approach (Ross,
2006). This kind of analysis has been used in many simulation tools like Tortuga (Mitre,
2009) or SimPy (Matloff, 2011). These tools are efficient in simulating systems that are
using a process-oriented object model similar as Java, C++, or Python languages. But for
paradigms that include distributed event-based asynchronous design, the simulation task
can imply in more challenges when modeling the system (Jacobs, Lang, & Verbraeck,
2002). Research has though been done on changing the process-oriented simulation lan-
guage to use event-based architecture for being able to capture the distributed nature of
a system (Snowdon & Charnes, 2002). This however often needs experienced persons
when carrying out the simulation process.
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We wanted to offer this kind of analysis with Timed Rebeca and be able to provide basic
statistical methods on the traces generated. To attain this, the tool-set which is a com-
bination of three components; timedreb2erl (translation), timedrebsim (simulator), and
timedrebanalyis (analysis) are implemented to manage simulations for Timed Rebeca and
to be able to apply analysis techniques on them.

5.1 Discrete-Event Simulation with
McErlang Timed Semantics

From using our mapping to McErlang with timed semantics we were opening the pos-
sibility to use it for simulation as well. The advantage of using timed semantics is that
we use explicit-state time passage. This means that we do not have to depend on local
system time when simulating the generated Erlang code. Precise time passage is then at-
tained because we compute the time instead of waiting for a system clock. In the previous
mapping, when executing we had time-slides while running the sequential code within
a message server. This caused a deviation in the expected timing of the corresponding
model compared to the formal semantics of Timed Rebeca as these time-slides accumu-
lated. For example see Listing 21, when the message server in Listing 16 is iterated for
65628.6 seconds the rounded value of time-slides from the expected time was 169.6 sec-
onds or 0.3%. Noticeable time-slide occurred after 527 seconds as the expected time was
then 526.

1 msgsrv calculate() {

2 int i = 0;

3 int s = ?(1,2,3,4,5);

4 int x = i*s;

5 inc = inc + 1;

6 checkpoint(incremented,inc);

7 self.calculate() after(1);

8 }

Listing 16: Timed Rebeca message server for testing time-slides

The newly proposed mapping is a solution for this problem as we are using explicit-state
simulation where messages (actions) that do not include timeouts will not cause elapse
of time. Furthermore, to show the efficiency of using simulation instead of execution we
depict the gain of data generation in Table 5.1, by comparing simulation to execution on
case studies from Chapter 6.



Haukur Kristinsson 43

Model Simulation using
timed semantics

Simulation using
execution runs Result

Ticket Service 60 seconds 20857 seconds 347% gain
Fichers Mutual Exclusion 60 seconds 41602 seconds 693% gain

Elevator System 60 seconds 46857 seconds 747% gain
Table 5.1: Comparison of doing simulation and execution. Each simulation (using new timed
semantics for McErlang) is executed with a time limit of 60 seconds and compared with how long
it takes to get to the similar point with the use of executing with native Erlang. The gain depends
on how much the model is delaying.

When the translation of a Timed Rebeca model to Erlang is successfully done we need
to configure McErlang to do simulation or model checking. When we choose to use
simulation, we use a different exploration algorithm presented in (Fredlund & Svensson,
2007) comparing to when we choose model checking. The simulation algorithm by de-
fault chooses the next program state in random fashion, and only explores one path of
execution in the model.

5.2 Timed Rebeca Traceability

We can trace the simulation of Timed Rebeca model based on events and checkpoints.
We defined event generation to happen when a message server takes a message out of the
message box of a rebec. The information related to an event is:

• Message sending time: Time of when the message was sent.

• Message arrival time: Time of when a message is taken from the queue.

• Message Expiration: Information on expiration of the message.

• Rebec Name: Name of the rebec that the message was sent to.

• Message Server Name: Name of the message server corresponding to the message.

• Parameters: Parameters that were sent with the message.

• Sender: Name of the sender rebec.
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These events are important to see the flow of information in the simulation and for seeing
if any expired messages exist in any of the generated traces. Checkpoints are then used
to identify certain scenarios that are interesting to the modeler and have more adjustable
information. The information related to checkpoints is:

• Time of checkpoint: The time of the checkpoint.

• Rebec Name: Name of the rebec that includes the checkpoint.

• Checkpoint label: Label of the checkpoint.

• Checkpoint terms: Terms (additional terms) of the checkpoint.

Checkpoints can be added between statements. Therefore the modeler can analyze the
flow of control inside a message server. Additional parameters of the checkpoints are
used for additional data that can be used in analysis of the checkpoint.
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5.3 Analysis Implementation

When performance evaluation begins for a model the usual approach is to first under-
stand, if what you are evaluating is over finite units of time or over an uncertain or
infinite time. These simulations are often categorized into (Kelton, 1997) (Law, 2010)
(Goldsman, 1992),

• terminating simulations and

• steady-state simulations

For simulating a terminating simulation from a model the usual approach is to issue a
simulation which has finitely many events and has a resulting random output V . This can
be repeated n times and statistical approaches can be directly applied on the captured set
of random outputs {V1, ..., Vn}. As when measuring a steady-state simulation with t →
∞, where t is the terminating time of the model, the simulation needs more consideration
as you need to define how long you need to simulate. Different techniques have been
proposed for statistically analysis of these simulations, namely replication, batch means,
time-series models, standardized time series, regeneration cycles, and spectrum analysis
(Kelton, 1997). These methods often boil down to breaking simulations into extents and
applying the normal statistical approaches to it.

When performance evaluation of a simulation is performed we typically are looking for
some quantity θ which is connected to the model. This quantity is often a segment of
a steady-state simulation but can be interpreted as many repetitive independent observa-

tions. By using independent observation we are allowing ourselves to stop the simulation
at any point and only using valid observation collected to this point (pair of checkpoints or
one checkpoint). Thus, in this project we estimate the performance of our traces with de-
tecting replication of observations in our simulations. The method involves in replicating

the dynamic behavior of a process by simulating the model multiple times, resulting in a
set of random output observations from many replicated simulations. These observations
are then the main ingredients of the quantity θ. Each observation can be,

• a pair of checkpoint, that uses the elapsed time from the first checkpoint to the
second checkpoint as a value point of interest, or

• one checkpoint with a value point that is of an interest.

This depends on what kind of analysis is being carried out. Each observation based on
their term then provides a quantity θ that is used to reason for the performance of the
system.
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5.3.1 Analysis Toolset

Mining simulations

To be able to reason about some quantity connected to a model, we implemented a set
of tools. The high-level architecture is depicted in Figure 5.1. The tools provide analysis
methods on Timed Rebeca models. The main component, the simulation wrapper (time-

drebsim), was implemented to keep track of the stream of generated simulation traces
from McErlang. The simulation wrapper provides a Timed Rebeca model to the transla-
tion component with a combination of setting arguments, which are; model arguments,
simulation timeout and the number of simulations that is to be generated. The translation
component (timedreb2erl) handles the mapping to Erlang which was first proposed in the
work (Reynisson, 2011) but was extended in this project as the former chapters explained.
When the translation component has finished, timedrebsim executes the translated model
with McErlang. While the simulation executes, McErlang will stream in the generated
output from the model to the simulator wrapper.

timedrebsim
Simulation Wrapper 

1: timedreb2erl
Translation of the 

model

3: timedrebanalysis
Manipulate simulation 

traces 

Timed Rebeca Model

Checkpoint 
Analysis ResultsPeriodic Events 

Analysis Results

Paired-checkpoint 
Analysis Results

Phase 1: Inputs the 
Time Rebeca 

model and outputs 
the translated 
Erlang model

Phase 3: Write generated traces to  
CSV files.

Timed Rebeca Toolset

2: McErlang
Execution of 

translated model

Phase 2: Executes the 
translated Erlang 

model with McErlang 
and streams it to the 
simulation wrapper. Extract traces from CSV files.

Figure 5.1: Architecture and flow of the data in the analysis tool-set. Bold arrow depicts actions
that happen without user’s interaction. CSV (Comma separate value) files stores all traces and are
used for analyzing simulations.

While simulating, timedrebsim will collect all simulations; cataloging them into extents
of simulation data-sets. Each data-set presents a generated output for each simulation
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carried out by McErlang. When the simulation phase is over and the generated simulation
output is in place, we can use the timedrebanalysis component to analyze the generated
data.

Statistical Evaluation Methods

The main purpose of analyzing performance indicators of a model is to reason about
the estimated probability of a quantity connected to the model. This helps us see an
estimation of what will really happen in our system models. For processing the data
we use simple statistical methods for obtaining expected values (means), variances and
standard deviations. These metrics shows the modeler what is the expected value of the
reviewed quantity and how the quantity distributes around the expected value. In addition
we also provide the worst and best case estimate (WCET and BET in paired-checkpoint
analysis).

The implementation of our analysis methods can have input of one or two (paired) check-
points that account as one observation in a simulation data-set. All observations from a
simulation are considered a sample which is a selection of potential results of an unknown
population of results. We then want to estimate characteristics of the whole population
with these samples and compute with what is observed as an estimate of the whole popu-
lation.

We use a common approach to estimate the expected value and variance of our samples.
Our data set consists of r simulations, each denoted as Sr. The sample size of each
simulation has a sample size nj of X1, X2, ..., Xnj

checkpoint pairs, that are measuring
the same quantity θ. Because the simulations are all from the same replicated behavior in
a model we assume that we are allowed to combine the measurements to get an improved
estimate of the real population. Thus we combine observations pairs with the sample size
asNcombined =

∑r
i=1 ni. We then calculate the sample mean (5.1) and the sample variance

(5.2).

X̄ =

∑r
i=1

∑ni

j=1Xij

Ncombined

(5.1)

σ2 =

∑r
i=1

∑ni

j=1(Xij − X̄i)
2∑r

i=1(ni − 1)
(5.2)

With this we can obtain a standard deviation (σ), which is the square root of the variance.
These equations give us an estimation of the variance of the real population, giving us an
estimate of the quantity θ.
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Visualization Methods

Large simulated data can often offer difficulties to visualize. For this we provide linear
data smoothing of the data. Following the smoothing, we reduce the data-set by picking
periodically values from the data.

The smoothing is done by applying moving averages (Kenney & Keeping, 1962) to each
value of the data before visualizing it. A moving average in practice is often used with
time series and is to see the data trend (historical average). The method is used to smooth
out short-term deviations and to create a longer-term trend of the data. The trend can be
adjusted based on how large the data is. This is adjusted with a degree that is defined
by the modeler. If each data point in the simulation is iM where M is the number of the
current value being calculated, MAM the calculated moving average for the data point
and N is the degree that has been chosen by the modeler then Formula 5.3 shows how we
calculate each value in our data.

MAM =
1

N
(iM + iM−1 + ...+ iM−(N−1)) (5.3)

When we have calculated moving averages for all values in our data we allow the modeler
to choose a sample reduction period. This reduces the magnitude of the data that gives
us more comprehensible visualization for the modeler. If our data contain V many value
points and we have a reduction period of p we will reduce the data by V/p. This is done
by taking only samples from the data every p times.

By using linear data smoothing method and then reduce the data by picking out values
periodically we limit the possibility of picking values that are not showing the actual trend
of the data.
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5.4 Performance Evaluation of Simulations

After the generation of data from a simulation our goal is to study some quantity of the
model and highlight useful information with methods proposed in the following sections.
This information is used to reason about the model or discuss implementation ideas.

In this project we used events and checkpoints for evaluating certain types of performance
indicators in models, namely

• paired-checkpoint analysis,

• checkpoint analysis, and

• periodic events analysis.

For each type of performance evaluation methods mentioned above, we use the following
as value points to reason about the model:

• one checkpoint for checkpoint analysis,

• a checkpoint pair for paired-checkpoint analysis, and

• events for periodic events analysis.

For us to be able to measure these indicators we need to have the mandatory parameter
of the checkpoint, meaning its label1, and the optional term(s) (any data-type in Timed
Rebeca).

• Labels are used to identify the checkpoints of interest:

– In paired-checkpoint analysis we need to know the starting and ending check-
point of a checkpoint pair to calculate the time difference between them.

• Terms are used for:

– Grouping checkpoints with the same term in paired-checkpoint analysis, mak-
ing each term a separate observation (but still use the label to define starting
or ending checkpoints of a checkpoint pair).

– Retrieving values from Timed Rebeca state or local variables to be used in
checkpoint analysis and periodic events analysis.

Note that when doing paired-checkpoint analysis we need to decide if to group check-
points by using terms or labels. Each group will then account for independent observa-
tions that are measuring the same quantity. Therefore for measuring the timing quantity

1 A constant consisting of letter or number characters.
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we collect multiple observations from the simulation, each observation being a paired
checkpoint. The value of an observation is the elapsed time between checkpoints. When
doing paired-checkpoint analysis and grouping observation with the term, it makes us ca-
pable of returning multiple measurements for each labeled checkpoint instead of only one
when grouping with the label.

For the remainder of this section we go into what is involved in measuring these indica-
tors.

5.4.1 Paired-checkpoint Analysis

Evaluation of a timing between a checkpoint pair in a model is what we call paired-

checkpoint analysis in this project. When the data generation of a simulation has been
completed we want to be able to measure the performance for a timing quantity connected
to the model. For measuring the timing quantity we gather multiple observations from the
simulation, each observation being a paired checkpoint. The value of an observation is the
elapsed time between checkpoints. Each checkpoint pair can be initiated with a starting
checkpoint of the types:

• Restricted: The checkpoint pair shall be inside the same rebec.

• Global: The checkpoint pair does not need to be inside the same rebec.

This means that each starting checkpoint in a pair needs to be defined by the modeler with
either the type global or restricted. Note that ending checkpoints are not defined as global
or restricted.

A good way of demonstrating types of starting checkpoints is to follow abstract traces
from a simulation in Figure 5.2.

1. S−→ 〈 checkpoint, rebec1, Label: startReq, Term: [ Restricted, [Term1] ] 〉 τ−→ · · ·
2. τ−→ 〈 event, rebec1, message server, Parameters 〉 τ−→ · · ·
3. S−→ 〈 checkpoint, rebec1, Label: startReq, Term: [ Global, [Term1] ] 〉 τ−→ · · ·
4. τ−→ 〈 event, rebec1, message server, Parameters 〉 τ−→ · · ·
5. E−→ 〈 checkpoint, rebec2, Label: endReq, Term: [Term1] 〉 τ−→ · · ·
6. E−→ 〈 checkpoint, rebec1, Label: endReq, Term: [Term1] 〉 τ−→ · · ·

Figure 5.2: Abstract example of a generated simulation. We denote S−→ as a mark for starting
checkpoint of a checkpoint pair, E−→ as a mark for ending checkpoint of a checkpoint pair, and
τ−→ for any other transition.

In Figure 5.2, the individual observation is a pair of checkpoints with the start label
startReq and the end label endReq. The term of each checkpoint contains param-
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eters that is used to group checkpoint pairs that are measuring the same timing quantity
together. A restricted checkpoint is denoted as restricted which is the first argument of a
Term. This helps us in scenarios when we have potentially multiple ending checkpoints
of an observation. When using restricted starting checkpoints we are only allowing the
source rebec to match with an ending checkpoint. Global starting checkpoints on the other
hand can be paired by any rebec in the model.

The two starting checkpoints in Figure 5.2 are located in line 1 and 3. The checkpoint
in line 1 is restricted and is initiated by rebec1. This starting checkpoint is ended with
the checkpoint in line 6. Note that the checkpoint in line 5 is also an ending checkpoint
and happens before line 6, but is from a different rebec. The ending checkpoint of line
5 is originating from rebec2 while the starting checkpoint is from rebec1. This makes it
not possible to pair with the checkpoint initiated from the starting checkpoint in line 1.
Therefore the starting checkpoint initiated from line 3 is ended with the ending checkpoint
in line 6, but not in line 5.

This approach gives us valuable information for models that include non-deterministic
properties and repeated behaviors. Furthermore, by adding lists to Timed Rebeca, we
also can measure waiting time in a queuing system, presuming that the modeler uses the
random features of Timed Rebeca to model the arrival sequence as a Poisson process
(Cooper, 1981; Ross, 2006). Such studies often are represented as server queues like in
Figure 5.3 and 5.6. These models are ideal for demonstrative purposes.

Server

Queue

Arrivals Departures

Figure 5.3: A single server queue system

For the model depicted in Figure 5.3 we have interest in estimating; waiting times of
arrivals inside the queue, throughput of the system, or estimating expected values of pro-
cessing timing of the server.

In Listing 17 we show a Timed Rebeca model of a single queuing system. The model
consists of two reactive classes, ArrivalProcess and Server. The server is defined as rebec
srv and is instantiated from the reactive class Server. The queue is defined as the rebec
proc and is instantiated from the reactive class ArrivalProccess. Arrival sequences to the
queue is sent with a non-deterministic delay of 1, 2, 9 or 10 (line 9). The server then
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processes requests in 1 to 5 time units. It should be noted that we include checkpoints
when requests are:

• sent from the proc (when the message server sendRequest is executed),

• processed by the srv (when the message server serverInit is executed),

• arriving into the queue (when the message server queueRequest in srv is executed),

• leaving the queue (finished executing the message server queueRequest in srv), and

• finished by srv (finished executing the message server serverInit in srv).

These checkpoints are included when these actions are taken to be able to measure the
performance of the system including throughput (request initiating and finishing), queue
waiting times and how long requests are being processed by the server.

The model depicted in Listing 17 was simulated with timedrebsim 5 times, each with
a timeout of 200 seconds. The simulation resulted in a dataset of 258084 checkpoint
pairs.

In Table 5.2 we measured three response indicators with timedrebanalysis;

• Throughput of the queuing system is measured by using the starting checkpoint in
line 8 (with the label requestStart) and the ending checkpoint in line 40 (with the
label requestFinished).

• Queue waiting times is measured by using the starting checkpoint in line 25 (with
the label requestInQueue) and the ending checkpoint in line 37 (with the label
serverBegins).

• Server performance is measured by using the starting checkpoint in line 37 (with the
label serverBegins) and the ending checkpoint in line 40 (with the label requestFin-

ished).

Response
Indicator

Expected
Response

Sample
Standard Deviation

Minimum
Value

Maximum
Value

Median
Value

Checkpoint
Pairs

Throughput 10.3 3.7 2 42 11 258084
Queue waiting time 0.6 1.7 0 24 0 258084
Server Performance 3 1.4 1 5 3 258084

Table 5.2: Paired-checkpoint evaluation of the single queue model. Values represents time units
and are estimates of elapsed times between checkpoints. Expected Responses are averages of all
elapsed times.

These measurements give the modeler estimates for response, waiting or throughput times
of their model as it is not trivial when simulating non-deterministic behaviors.
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1 reactiveclass ArrivalProccess(2) {

2 knownrebecs { Server srv; }

3 statevars { int token; }

4

5 msgsrv initial() { token = 0; self.send(); }

6

7 msgsrv sendRequest() {

8 checkpoint(requestStart,token); /* Start of Request */

9 int DelayArrivalSend = ?(1,2,9,10); /* Non-Deterministic Delay */

10 delay(DelayArrivalSend); /* Delay for Arrival Requests */

11 srv.queueRequest(token); /* Send token to Queue of the Server */

12 token = token + 1; /* Increment Token */

13 self.sendRequest(); /* Iterate */

14 }

15 }

16

17 reactiveclass Server(2) {

18 knownrebecs { ArrivalProcess proc; }

19 statevars { boolean serveractive; list<int> qserver; }

20

21 msgsrv initial() { serveractive = false; }

22

23 msgsrv queueRequest(int tok)

24 {

25 checkpoint(requestInQueue,tok); /* Mark Queue input */

26 qserver.insert(tok); /* Insert token to Server Queue */

27 if(serveractive == false) { /* Initiate Server if not running */

28 self.serverInit();

29 }

30 }

31 msgsrv serverInit() {

32 serveractive = true; /* Server Active */

33

34 if(qserver.size() > 0) { /* Safety */

35 int reqToken = qserver.first(); /* FIFO, take first request out */

36 qserver.remove(reqToken); /* Remove first request out of queue */

37 checkpoint(serverBegins,reqToken); /* Mark request processing */

38 int processtime = ?(1,2,3,4,5);

39 delay(processtime); /* Non-Deterministic processing time */

40 checkpoint(requestFinished,reqToken); /* Mark finished request */

41 checkpoint(processQueueSize,qserver.size()); /* Mark size of the queue */

42 }

43

44 if(qserver.size() > 0) { /* Continue processing if queue not empty */

45 self.serverInit();

46 } else {

47 serveractive = false; /* Server not active */ }

48 }

49 }

50

51 main {

52 ArrivalProccess proc(srv):();

53 Server srv(proc):();

54 }

Listing 17: Timed Rebeca Model - Single Queue System
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5.4.2 Checkpoint analysis

When doing checkpoint analysis we consider only one checkpoint as the observation each
given time. The method uses the time and the term value of a given checkpoint. This is
used for capturing some quantity which evolves over time. The method is then based
on visualizing the results by plotting each simulation as an independent time series on
a chart. In addition to visualization, we provide some statistical information related to
the checkpoint being reviewed. This gives the modeler insights into how the observation
evolves differently when simulating.

When doing checkpoint analysis on the model depicted in Listing 17 we have the in-
terest of seeing how the queue size evolves. This is obtained by using the checkpoint
processQueueSize placed in line 41. This checkpoint has at each given time the value
qserver.size() assigned, which is the size of the server queue in the model.

Figure 5.4: Checkpoint visualization of simulation 1 and 2 for the single queue model of Figure
5.3. Checkpoint value is the queue size of the server rebec. The presented graph shows raw data
without any smoothing methods applied.

Simulation
Number

Expected
Value

Sample
Standard Deviation

Minimum
Value

Maximum
Value

Median
Value Occurrences

1 0.2059 0.5254 0 6 0 53888
2 0.2037 0.5192 0 6 0 51642
3 0.2026 0.5112 0 5 0 50744
4 0.2037 0.5157 0 6 0 52781
5 0.2089 0.5263 0 7 0 49029

Total 0.2049 0.5196 0 7 0 258084

Table 5.3: Checkpoint evaluation of the single queue model. Values are estimates of the whole
population.

Results of the analysis are shown partially in Figure 5.4 which shows the plots of how the
queue size (values of the checkpoint) evolves over time. In addition statistical measure-
ments are provided in Table 5.3.
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Figure 5.5: Checkpoint visualization of simulation 1 and 2 for the single queue model of Figure
5.3, with smoothed reduction. The presented graph shows data with moving average smoothing
method. Smoothing degree was set to 150 and reduction period to 150.

Using checkpoint analysis shows the modeler valuable information on how the value of
the checkpoint evolves as statistical measurements (like presented in Table 5.3) are often
not presenting enough information. When looking at Table 5.3 and comparing it to the
plots in Figure 5.4, we see that queue size is distributed between 0 and 6 which is not
visible when looking at statistical information in Table 5.3. The statistical information
shows that the queue size is more often near zero, and that the maximum size is around
5 to 7. By visualizing the data in addition of providing statistics we are getting more
insights into how the data evolves.

Simulation results are typically very large data-set and not easily visualized. To facilitate
visualization timedrebanalysis has the capability of reducing plots with applying Gaussian
smoothing and moving average methods to the data-set. Following the smoothing we
then reduce the results by choosing periodic points from the results. These setting can be
configured by the modeler by defining smoothing degree and a reduce period.

Figure 5.5 presents checkpoint visualization of the same data-set shown in Figure 5.4 but
with smoothing and reduction methods applied to it. This is explained in Section 5.3.
This gives the modeler even more insight into the behavior of the model as the plot is
more understandable when dealing with large data-sets.
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5.4.3 Periodic Events Analysis

To see the frequency of behaviors in a model we use events to acquire periodic events
analysis for Timed Rebeca models. We extract events from the collected data from each
performed simulation of the model. We use this approach to see for example, how the
load is distributed among components in a system (frequency of called message servers
in rebecs). This can often offer useful information like in the system depicted in Figure
5.6 which shows an abstract multi-server queuing system. The multi-server queue has
a queue that has 3 possible servers to send request to. Each server processes serves the
requests. While the server is processing a request it is unable to receive any new request,
therefore if server 1 is busy the queue will try server 2 and 3. If no server is free it will
wait non-deterministically and try again with server 1. In this scenario we would want to
know how these requests are distributed among the servers.

Server 1

Queue

Arrivals

Server 2

Server 3

Departures

Departures

Departures

1.

2.

3.

Figure 5.6: A multi-server queue system.

Timed Rebeca model for the multi queuing system in Figure 5.6 is depicted in List-
ing 18. The model consists of 3 reactive classes: ArrivalProcess, Queue and Server.
The rebec proc is instantiated from the reactive class ArrivalProcess, and sends non-
deterministically a request to the message server queue included in rebec ques which
is instantiated from the reactive class Queue. Each request is sent with 1 to 5 time units
delay. Three servers are defined as srv1, srv2 and srv3 all instantiated from the reactive
class Server. These rebecs start by waiting for receiving message from the rebec ques.
Each time a request is received by the rebec ques, it first tries to send it to the srv1 rebec.
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Figure 5.7: Periodic Events Analysis of all simulations of the multi queue model

If the first server is busy with another request, the rebec ques will try to send it to srv2

rebec and so on. Each of the server rebecs then finishes processing the request after 1, 2,
3 or 6 time units before being again available for receiving a new request.

The model described above was simulated with timedrebsim 5 times, each with a timeout
of 200 seconds. The simulation resulted in 240561 message server calls to processToken

and was distributed among the three rebecs; Server1, Server2 and Server3 with values of
144391, 74826 and 21344 respectively.

The results are depicted in Figure 5.7. A noticeable difference in distribution of the re-
quests can be seen, as the first server (rebec srv1) gets 60% of issued requests. This is
because the rebec ques always asks srv1 first, if it’s free for processing, after that srv2 and
srv3.

1 reactiveclass ArrivalProccess(2) {

2 knownrebecs { Queue qa; }

3 statevars { int token; }

4 msgsrv initial() { token = 0; self.send(); }

5

6 msgsrv send() {

7 trace(requestStart,token);

8 delay(?(1,2,3,4));

9 qa.queue(token);

10 token = token + 1;

11 self.send();

12 }

13 }

14 reactiveclass Queue(2) {
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15 knownrebecs { Server srv1; Server srv2; Server srv3; }

16 statevars { boolean srv1active, srv2active, srv3active; list<int> qserver; }

17 msgsrv initial() { srv1active = false; srv2active = false; srv3active = false; }

18

19 msgsrv queue(int tok) {

20 qserver.insert(tok); /* Insert request on the top of the queue */

21 self.sendrequest(); /* Send */

22 trace(queueSizeAfterAdd,qserver.size());

23 }

24 msgsrv sendrequest() {

25 if(srv1active == false) { /* Check if Server 1 is free */

26 srv1.processToken(qserver.first());

27 srv1active = true; qserver.remove(qserver.first());

28 } else if(srv2active == false) { /* Check if Server 2 is free */

29 srv2.processToken(qserver.first());

30 srv2active = true; qserver.remove(qserver.first());

31 } else if(srv3active == false) { /* Check if Server 3 is free */

32 srv3.processToken(qserver.first());

33 srv3active = true; qserver.remove(qserver.first());

34 } else {

35 delay(?(1,2,3)); /* Delay retry time */

36 self.sendrequest(); /* Retry */

37 }

38 }

39 msgsrv serverack(int Token, int ServerId) { /* Set Server as inactive */

40 if(ServerId == 1) {

41 srv1active = false;

42 trace(requestFinished,Token);

43 trace(processQueueSize,qserver.size());

44 } else if(ServerId == 2) {

45 srv2active = false;

46 trace(requestFinished,Token);

47 trace(processQueueSize,qserver.size());

48 } else if(ServerId == 3) {

49 srv3active = false;

50 trace(requestFinished,Token);

51 trace(processQueueSize,qserver.size()); }

52 }

53 }

54 reactiveclass Server(2) {

55 knownrebecs { Queue qs; }

56 statevars { int ident; }

57 msgsrv initial(int id) { ident = id; }

58

59 msgsrv processToken(int Token) {

60 trace(serverBegins,Token);

61 delay(?(1,2,3,6)); /* Non-deterministic processing time */

62 qs.serverack(Token,ident); /* Let the Queue know that the server is inactive */

63 }

64 }

65 main {

66 ArrivalProccess proc(ques):();

67 Queue ques(srv1,srv2,srv3):();

68 Server srv1(ques):(1); Server srv2(ques):(2); Server srv3(ques):(3);

69 }

Listing 18: Timed Rebeca Model - Multi Queue System



Haukur Kristinsson 59

5.5 Discussions

This Chapter proposes three analysis methods, namely paired-checkpoint analysis, check-
point analysis and periodic events analysis. For each method we present an example that
shows the reader the scenarios where we can provide useful information.

A multitude of research question (methods) is still not answered regarding analysis of
simulation for real-time systems. The methods proposed here only being few of many.
These questions are left as future works.
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Chapter 6

Case Studies and Experimental
Results

In this section we present some case studies. For all these studies we construct a Timed
Rebeca model and then perform analysis. The analysis will be based on what we have
described in Chapter 4 and 5. First we carry out a verification of safety properties and then
we use performance evaluation techniques to gain more insight into the dynamic behavior
of each model.

EventA EventB EventC

RebecA RebecB RebecC

Figure 6.1: Example of an event graph. Initially the message server EventA in RebecA sends a
message that triggers the message server EventB in rebec RebecB. Followed by a message sent by
EventB that triggers the message server EventC of the rebec RebecC.

We present each model with event graphs (Buss, 1996). Event graphs are well-known
for explaining discrete-event simulation models. The three elements of a discrete event
system models are the state variables, the events that change the values of these state
variables, and the relationships between the events (one event causing another). In an
event graph the nodes represent events in the system and edges represent the scheduling
of other events (causal relation between events) (Buss, 1996). Edges can be conditional
(thick edge), mandatory (thin edge) or marking an initial event (jagged edge). Typically
an edge can have certain guards like time or a Boolean, but here we only use reactive
classes of the model as labels for an event. This label shows in what reactive class the
event occurs. An example of an event graph is shown in Figure 6.1.
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6.1 Ticket Service

In (Aceto et al., 2011) a ticket service example and some analysis are presented based
on the execution of the Erlang code derived from the Rebeca model. The Timed Rebeca
model consisted of two reactive classes: Agent and TicketService. Listing 19 shows the
example written in Timed Rebeca. Two rebecs, ts1 and ts2, are instantiated from the
reactive class TicketService, and one rebec a from the reactive class Agent. The agent
rebec a starts by sending a message and requesting a ticket from the first ticket service,
ts1. The message has a deadline of requestDeadline time units. When the message is
received by the ticket service ts1 it issues the ticket in serviceTime1 or serviceTime2 time
units. It does so by sending a message back to the agent rebec a. After the agent a sent
the message to ts1, another message is sent to itself after checkIssuedPeriod time units.
This is for checking if the message had been issued or not. If the ticket is issued we
continue to the next customer and request a new ticket after newRequestPeriod time units.
If the ticket has not been issued agent a immediately sends a message to the second ticket
service ts2 using the same approach as before. If the ticket is issued by the second ticket
service ts2, the agent continues to his next customer after newRequestPeriod time units.
This process then continues repeatedly. Note that the agent rebec a only issues the last
requested ticket as some tickets could arrive sooner than prior request that was not expired
by the deadline.

find
ticketinitial

request
ticket

ticket
issued

check
ticket

retry

Agent Agent

Agent

Agent

Agent

TicketService

Figure 6.2: Event graph of the ticket service model.



Haukur Kristinsson 63

1 env int requestDeadline, checkIssuedPeriod, retryRequestPeriod, newRequestPeriod,

serviceTime1, serviceTime2, maxIssued;

2

3 reactiveclass Agent(3) {

4 knownrebecs { TicketService ts1; TicketService ts2; }

5 statevars { int attemptCount; boolean ticketIssued; int token; }

6 msgsrv initial() { self.findTicket(ts1); }

7

8 msgsrv findTicket(TicketService ts) {

9 attemptCount = attemptCount + 1;

10 token = token + 1;

11 if(token <= maxIssued) {

12 ts.requestTicket(token) deadline(requestDeadline);

13 self.checkTicket() after(checkIssuedPeriod); }

14 }

15 msgsrv ticketIssued(int tok) {

16 if (token == tok) {

17 ticketIssued = true;

18 checkpoint(ticketissued,token); sender.ack(1);

19 } else {

20 checkpoint(ticketnotissued,token); sender.ack(0);

21 }

22 }

23 msgsrv checkTicket() {

24 if (!ticketIssued && attemptCount == 1 && token <= maxIssued) {

25 self.findTicket(ts2);

26 } else if (!ticketIssued && attemptCount == 2 && token <= maxIssued) {

27 self.retry() after(retryRequestPeriod);

28 } else if (ticketIssued && token <= maxIssued) {

29 ticketIssued = false;

30 self.retry() after(newRequestPeriod);

31 }

32 }

33

34 msgsrv retry() { attemptCount = 0; self.findTicket(ts1); }

35 }

36 reactiveclass TicketService(3) {

37 knownrebecs { Agent agent; }

38 statevars { }

39 msgsrv initial() { }

40

41 msgsrv requestTicket(int token) {

42 int wait = ?(serviceTime1,serviceTime2);

43 delay(wait);

44 agent.ticketIssued(token);

45 }

46 msgsrv ack(int mark) { if(mark == 0) { checkpoint(ackNotIssued,false); } else {

checkpoint(ackIssued); } }

47 }

48 main {

49 Agent agent(ts1, ts2):();

50 TicketService ts1(agent):(); TicketService ts2(agent):();

51 }

Listing 19: Timed Rebeca Model - Revised ticket service example
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6.1.1 Safety Verification

Experiments were carried out with different arguments passed to the model. The ar-
guments provided are requestDeadline, checkIssuedPeriod, retryRequestPeriod, newRe-

questPeriod serviceTime1, serviceTime2 and maxIssued. The original model from (Aceto
et al., 2011) was revised and maxIssued was added to avoid state-explosion caused un-
bounded iterations. This was omitted when doing simulations.

Two safety properties were of interest:

• Are there any tickets that do not get issued (all tickets are issued).

• Are any of the tickets issued (possibility of a ticket to get issued).

The property used for verifying the model was formed as monitors (using the Timed
Rebeca checkpoint template) and are presented in Listing 20 and 21. These monitors use
checkpoints placed within the Timed Rebeca model in Listing 19. Checkpoints are seen
in lines 18 and 20.

1monitorType() -> safety.

2

3init(_) -> {ok, satisfied}.

4

5stateChange(_,satisfied,Stack) ->

6CheckpointLabel = ticketnotissued,

7Actions = actions(Stack),

8

9checkLabelCheckPoint(Actions, CheckpointLabel).

Listing 20: Safety property to check if we ever get an non-issued

ticket.

1monitorType() -> safety.

2

3init(_) -> {ok, satisfied}.

4

5stateChange(_,satisfied,Stack) ->

6CheckpointLabel = ticketissued,

7Actions = actions(Stack),

8

9checkLabelCheckPoint(Actions, CheckpointLabel).

Listing 21: Safety property to check if we ever get an issued ticket.

The monitors in Listings 20 and 21, show that the checkpoints of interest are using the
labels ticketissued or ticketnotissued. The checkpoint of interest depends on if we are
verifying if a ticket is ever issued or never issued. Safety verification is done by using
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the predefined function checkLabelCheckPoint of the Timed Rebeca monitor template
explained in Chapter 4.

For us to compare these experiments with ones presented in (Aceto et al., 2011) we used
the property defined in Listing 21 to halt with a violation if an issued ticket occurred.
Former experiments were carried out in an execution-manner and the results are presented
in Table 6.1 (Aceto et al., 2011).

Setting Request
deadline

Check issued
period

Retry request
period

New request
period

Service
time 1

Service
time 2 Result

1,2 2 1 1 1 3,4 7 Not issued
3 2 2 1 1 4 7 Not issued
4 2 2 1 1 3 7 Ticket issued

Table 6.1: Experimental simulation (execution-manner) results for ticket service (Aceto et al.,
2011).

To confirm these results we used verification with the monitor and got the results presented
in Table 6.3. The property got satisfied for settings 1, 2 and 3. These results confirmed that
no ticket would ever get issued after 7 tickets being requested. The verification process
took 54, 67 and 46 seconds, for settings 1, 2, and 3 respectively. Furthermore, setting 4
in Table 6.3 resulted in a violation and showed that the former results from (Aceto et al.,
2011) was correct. The verification process took 2 seconds. These results confirm the
former experiments.

Setting Request
deadline

Check issued
period

Retry request
period

New request
period

Service
time 1

Service
time 2

Max Ticket
Requests Result

1 2 1 1 1 3 7 7
Satisfied

(170737 states)

2 2 1 1 1 4 7 7
Satisfied

(199709 states)

3 2 2 1 1 4 7 7
Satisfied

(153377 states)

4 2 2 1 1 3 7 7
Violation

(6248 states)

5 2 2 1 1 2 7 7
Violation

(4398 states)

6 2 3 1 1 2 7 7
Violation

(4311 states)

7 2 4 1 1 2 7 7
Violation

(4311 states)

Table 6.2: Verification results for ticket service. Property is satisfied if no ticket got issued.

In addition we checked if we could find a setting where all tickets get issued. For this we
used the monitor in Listing 20. Table 6.3 shows the results were settings 6 and 8 had all
the tickets issued.
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Setting Request
deadline

Check issued
period

Retry request
period

New request
period

Service
time 1

Service
time 2

Max Ticket
Requests Result

1 2 1 1 1 3 7 7
Violation

(4584 states)

2 2 1 1 1 4 7 7
Violation

(4926 states)

3 2 2 1 1 4 7 7
Violation

(4440 states)

4 2 2 1 1 3 7 7
Violation

(4360 states)

5 2 2 1 1 2 7 7
Violation

(5227 states)

6 2 5 1 1 3 4 7
Satisfied

(4807 states)

7 2 5 1 1 5 4 7
Violation

(4807 states)

8 2 6 1 1 5 4 7
Satisfied

(4807 states)

Table 6.3: Experimental verification results for ticket service. Property is violated if one or more
tickets are not issued (all tickets have to be issued).

6.1.2 Performance Evaluation

From the verification results we now know what setting will end where some tickets got
issued. For these settings we wanted to see the performance of the model. Two methods
proposed in Chapter 5 can be of use, namely paired-checkpoint analysis and periodic
events analysis. We used paired-checkpoint analysis to get more insight in how many
tickets are issued and how long it took for a ticket to get issued. Periodic events analysis
shows us how the issued tickets got distributed between ticket services. Table 6.4 shows
the paired-checkpoint evaluation of the model. Each setting was simulated 5 times, each
for 200 seconds. All checkpoints in the evaluation are marked as global as the starting
checkpoint did not have many possible endings checkpoints. Furthermore when carrying
out the paired-checkpoint evaluation we set timedrebanalysis to group checkpoints with
labels.

Setting Expected
response

Standard
Deviation

Minimum
response

Maximum
response

Median
response

Starting
checkpoints

Checkpoint
pairs

4 3.0 0 3.0 3.0 3.0 519350 614
5 2.1 0.1 2 3.0 2.0 511709 51476
6 4.0 0 4.0 4.0 4.0 363891 81585
7 3.0 0 3.0 3.0 3.0 573551 286948

Table 6.4: Paired-checkpoint evaluation for Ticket Service. Settings are from Table 6.3 where all
guarantee that some tickets get issued.

Given the performance analysis of the ticket service model, we see that setting 7 in Ta-
ble 6.4 has the most issued tickets, around 50% of all requests. Settings 4, 5 and 6 had
0.1%, 10% and 22%. For setting 5 the expected response was 2.1 with a standard devi-
ation of 0.1 which shows less response time than any of the other settings. Furthermore,
periodic events analysis depicted in Figures 6.3 and 6.4 shows that for setting 7 we had
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almost 66.8% of the issued tickets from ticket service 1 which shows that most tickets got
issued immediately by the first ticket service or when retrying after retryRequestPeriod.
Similar distribution trend is for settings 6 and 7 though setting 7 had more issued tickets.
This is because the sum of checkIssuedPeriod and retryRequestPeriod is higher than both
serviceTime1 and serviceTime2 making it more likely for the ticket to get issued after 2
tries.

An interesting property of the model was noticed. We got more issued tickets from setting
7, although the service time higher than settings 1 to 6. One would expect that higher ser-
vice times would result in higher missed tickets. This does not seem to be the case.

Figure 6.3: Periodic events analysis of setting 4 and 5 for the ticket service example

Figure 6.4: Periodic events analysis of setting 6 and 7 for the ticket service example
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6.2 Elevator System

Elevator systems have been a prototypical example for presenting analysis techniques for
real-time systems, like performance analysis, scheduling analysis, reliability analysis and
WCET analysis (Shui, Mustafiz, Kienzle, & Dony, 2005) (Gomaa, 2000). This case study
is a centralized elevator controlling system, which is an abstract model of the system pre-
sented in (Gomaa, 2000). Rather than assigning constants to all events in the system and
do performance analysis by calculating if the system’s hardware could carry out estimated
worst case input scenarios (like the work in (Gomaa, 2000)), we proposed to use verifi-
cation and simulation with Timed Rebeca and using our evaluation methods described in
Chapter 4 and 5. These approaches give us a good estimation on worst case execution
time (WCET) and how different scheduling policies perform.

We examined two types of elevator movement policies and for the most efficient one we
experimented with three types of different scheduling policies. Movement policies define
how an elevator moves between floors based on requests that have already been placed
in the elevator queue (can be seen as an internal decision by the elevator based on the
contents of its event queue). Scheduling policies define how floor requests are dispatched
among elevators (can be seen as a decision made by a coordinator on dispatching re-
quests).

The summary of combination of scheduling and movement policies in our experiments is
presented in Table 6.5.

Implementation # Scheduling
Policy

Movement
Policy

1 Shortest distance Up priority
2 Shortest distance Maintain movement
3 Shortest distance with movement priority Maintain movement
4 Shortest distance with load balancing Maintain movement

Table 6.5: Combination summary of policy implementations for the elevator system.
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6.2.1 Model Design

The elevator system is presented in the form of an event graph in Figure 6.5. Abstract
Timed Rebeca model is shown in Listing 22, which shows the structure and where the
movement policies and scheduling policies are implemented. The full model is located
on the Timed Rebeca website (Kristinsson, 2012). The model consists of four reactive
classes; Floor, Elevator, Coordinator, and Person.

goinitial

Person Person

callElevator

Floor

requestFloor

Elevator

handleRequest

Coordinator

moveUp

Elevator

moveDown

Elevator

stopOpen

Elevator

handleElevator-

Movement

Coordinator

Figure 6.5: Event graph of the centralized elevator system.

Floors are defined as 10 rebecs, floor1 to floor10 which are instantiated from the reactive
class Floor. Elevators are defined as 2 rebecs, el1 and el2 which are instantiated from
the reactive class Elevator. Each Floor rebec represents a floor and each Elevator rebec
represents an elevator in the model. The rebec pers instantiated from the reactive class
Person is used to simulate a person who triggers periodic event and sends a message
randomly to one of the floors or elevators rebecs. Random choices include sending a
message callElevator or requestFloor to any of the rebecs instantiated from the Floor
or Elevator reactive classes. Each random choice has a delay defined in the argument
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simulationDelay which defines the time units until next iteration of sending a message go

occurs. Number of iterations is defined in the argument simulationIterations.

When a message callElevator or requestFloor is sent, a message is immediately sent to
the coord rebec which is instantiated from the reactive class Coordinator. The coord rebec
handles all logic in the system, and decides which elevator gets the request or what move-
ment should be made by an elevator. The two main message servers are handleRequest

and handleElevatorMovement. The message server handleRequest decides what eleva-
tor gets the request. The first implementation of handleRequest is depicted in Listing
23, it presents a scheduling policy that we call: shortest distance. The message server
handleElevatorMovement updates movements and queues of the elevators and decides
whether to move them. The first implementation of handleElevatorMovement is depicted
in Listing 24, it presents a movement policy that we call up priority.

1 env int simulationDelay, simulationItterations, elevatorMovementDelay,

elevatorDoorDelay1, elevatorDoorDelay2, elevatorDoorDelay3, elevatorDoorDelay4;

2 reactiveclass Floor(4) {

3 knownrebecs { Coordinator coord; }

4 statevars { int floorIdent; boolean isRestricted; }

5

6 msgsrv initial(int floorID) {

7 floorIdent = floorID; // identity of the floor.

8 isRestricted = false; // requests from floors are not restricted.

9 }

10

11 msgsrv callElevator() {

12 checkpoint(startRequestFloor,floorIdent,isRestricted); // Global checkpoint

13 coord.handleRequest(floorIdent,true); // Send the request to the coordinator.

14 }

15 }

16

17 reactiveclass Elevator(4) {

18 knownrebecs { Coordinator coord; }

19 statevars {

20 int movementDelay; /* Delay of movement between floors. */

21 boolean isRestricted;

22 }

23

24 msgsrv initial(int mDelay) {

25 isRestricted = true; // Requests from elevators are restricted.

26 movementDelay = mDelay; // Set movement delay.

27 }

28

29 msgsrv moveUp(int floor) {

30 checkpoint(elevatorLocation,floor+1); // Checkpoint when elevator moves up.

31 delay(movementDelay); // Movement delay.

32 coord.handleElevatorMovement(1); // Send to coordinator that we have moved.

33 }

34

35 msgsrv moveDown(int floor) {
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36 checkpoint(elevatorLocation,floor-1); // Checkpoint when elevator moves down.

37 delay(movementDelay); // Movement delay.

38 coord.handleElevatorMovement(-1); // Send to coordinator that we have moved.

39 }

40

41 msgsrv stopOpen(int floor) {

42 int randomdelay =

?(elevatorDoorDelay1,elevatorDoorDelay2,elevatorDoorDelay3,elevatorDoorDelay4);

43 delay(randomdelay); // Delay when opening and closing door.

44 checkpoint(endRequestElevator,floor); // Checkpoints that ends a request.

45 coord.handleElevatorMovement(0); // Send to coordinator that we have opened and

closed.

46 }

47

48 msgsrv requestFloor(int floor) {

49 checkpoint(startRequestFloor,floor,isRestricted); // Requests from elevators are

restricted.

50 coord.handleRequest(floor,false); // Send request to coordinator.

51 }

52

53 msgsrv stopRequest(int floor) { // Added due to cancelation of requests

54 checkpoint(endRequestElevator,floor); // Checkpoints that ends a request.

55 }

56 }

57

58 reactiveclass Coordinator(4) {

59 knownrebecs {

60 Floor flr1; Floor flr2; Floor flr3; Floor flr4; Floor flr5;

61 Floor flr6; Floor flr7; Floor flr8; Floor flr9; Floor flr10;

62 Elevator el1; Elevator el2;

63 }

64 statevars {

65 int el1location; int el1movement;

66 int el2location; int el2movement;

67 list<int> el1queue; list<int> el2queue;

68 int schedulingDelay;

69 }

70

71 msgsrv initial(int scDelay) {

72 el1location = 1; el2location = 1; // Start at floor 1

73 el1movement = 0; el2movement = 0; // 0 means not moving.

74 schedulingDelay = scDelay; // Scheduling delay.

75 }

76

77 msgsrv handleElevatorMovement(int movement)

78 {

79 /* Movment policies implemented here */

80 }

81

82 msgsrv handleRequest(int floor, boolean isFloor)

83 {

84 /* Scheduling policies implemented here */

85

86 checkpoint(elevator1QueueSize,el1queue); // Check Size of Elevator Queue

87 checkpoint(elevator2QueueSize,el2queue); // Check Size of Elevator Queue

88

89 /* After dispatching request to elevator queue */
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90 /* Shall we start Elevator 1 - is it idle?. */

91 if(el1movement == 0 && el1queue.size() > 0) {

92 if(erlang.next(el1queue,el1location,-1) != -1 &&

erlang.next(el1queue,el1location,-1) != el1location) {

93 el1movement = -1;

94 el1.moveDown(erlang.next(el1queue,el1location,-1));

95 }

96 else if(el1up != -1 && el1up != el1location) {

97 el1movement = 1; // Update movement

98 el1.moveUp(erlang.next(el1queue,el1location,1)); // Tell elevator to move up.

99 }

100 else { el2movement = -2; el1.stopOpen(el1location); }

101 }

102 /* Shall we start Elevator 2 - is it idle?. */

103 if(el2movement == 0 && el2queue.size() > 0) {

104 if(erlang.next(el2queue,el2location,-1) != -1 &&

erlang.next(el2queue,el2location,-1) != el2location) {

105 el2movement = -1;

106 el2.moveDown(erlang.next(el2queue,el2location,-1);

107 }

108 else if(erlang.next(el2queue,el2location,1) != -1 &&

erlang.next(el2queue,el2location,1) != el2location) {

109 el2movement = 1;

110 el2.moveUp(erlang.next(el2queue,el2location,1));

111 }

112 else { el2movement = -2; el2.stopOpen(el2location); }

113 }

114 }

115 }

116

117 reactiveclass Person(4) {

118 knownrebecs {

119 Floor flr1; Floor flr2; Floor flr3; Floor flr4; Floor flr5;

120 Floor flr6; Floor flr7; Floor flr8; Floor flr9; Floor flr10;

121 Elevator el1; Elevator el2;

122 }

123 statevars { int delayInSec; int iterations; }

124

125 msgsrv initial(int d, int i) {

126 delayInSec = d; iterations = i;

127 self.go(delayInSec,0);

128 }

129

130 msgsrv go(int delays, int incIter)

131 {

132 /* Randomly Select a floor or an elevator to make requests */

133 int floorCall = ?(1,2);

134 int flrNumber = ?(1,2,3,4,5,6,7,8,9,10);

135 int elvNumber = ?(1,2);

136 if(floorcall == 1) {

137 if(flr == 1) { flr1.callElevator(); } else if(flr == 2) { flr2.callElevator(); }

138 else if(flr == 3) { flr3.callElevator(); } else if(flr == 4) { flr4.callElevator();

}

139 else if(flr == 5) { flr5.callElevator(); } else if(flr == 6) { flr6.callElevator();

}

140 else if(flr == 7) { flr7.callElevator(); } else if(flr == 8) { flr8.callElevator();

}
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141 else if(flr == 9) { flr9.callElevator(); } else if(flr == 10) {

flr10.callElevator(); }

142 } else {

143 if(elv == 1) { el1.requestFloor(flr); }

144 else if(elv == 2) { el2.requestFloor(flr); }

145 }

146

147 delay(delays); //Delay between simulations.

148 if(incIter < iterations) { self.go(delayInSec,incIter+1); }

149 }

150 }

151

152 main {

153 Floor flr1(coord):(1); Floor flr2(coord):(2); Floor flr3(coord):(3);

154 Floor flr4(coord):(4); Floor flr5(coord):(5); Floor flr6(coord):(6);

155 Floor flr7(coord):(7); Floor flr8(coord):(8); Floor flr9(coord):(9);

156 Floor flr10(coord):(10);

157 Elevator el1(coord):(elevatorMovementDelay); Elevator

el2(coord):(elevatorMovementDelay);

158 Coordinator coord(flr1,flr2,flr3,flr4,flr5,flr6,flr7,flr8,flr9,flr10,el1,el2)

159 :(schedulingDelay);

160 Person pers(flr1,flr2,flr3,flr4,flr5,flr6,flr7,flr8,flr9,flr10,el1,el2)

161 :(simulationDelay,simulationItterations);

162 }

Listing 22: Timed Rebeca Model - Pseudo centralized elevator model. The message servers

handleElevatorMovement and handleRequest implements movement and scheduling policies.
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1 msgsrv handleRequest(int floor, boolean isFloor)

2 {

3 delay(networkDelay);

4 if(isFloor == true) /* Requests from floors. */

5 {

6 checkpoint(FloorRequestingElevator, floor);

7 int choice = ?(1,2); // prepared calculations.

8 if(erlang.contains(el1queue,floor) == 1 || erlang.contains(el2queue,floor) == 1) {

// 0. Ignore the request because it is already in a queue. }

9 /* 1. Either elevator on the same floor. */

10 else if(el1location == floor || el2location == floor) {

11 if(el1location == floor) { el1queue.insert(floor); }

12 else if(el2location == floor) { el2queue.insert(floor); }

13 checkpoint(endRequestElevator,floor);

14 }

15 /* 2. Both elevators on the same floor - Nondeterministic choice */

16 else if(el1location == el2location) {

17 if(choice == 1) { el1queue.insert(floor); }

18 else if(choice == 2) { el2queue.insert(floor); }

19 }

20 /* 3. Which elevator has the least distance - First check for elevator 2 */

21 else if(erlang.absolutevalue(floor-el1location) >

erlang.absolutevalue(floor-el2location)) {

22 el2queue.insert(floor);

23 }

24 /* 4. Which elevator has the least distance - Then elevator 1. */

25 else { el1queue.insert(floor); }

26 }

27 /* Requests from elevators. */

28 else

29 {

30 checkpoint(ElevatorRequestingElevator, floor);

31 if(sender == el1 && el1location != floor && erlang.contains(el1queue,floor) == -1) {

32 el1queue.insert(floor); }

33 else if(sender == el2 && el2location != floor && erlang.contains(el2queue,floor) ==

-1) {

34 el2queue.insert(floor); }

35 else if(el1location == floor || el2location == floor) {

36 sender.stopRequest(floor); }

37 else { sender.stopRequest(floor); }

38 }

39

40 /* Should we start any idle elevators ... */

41

42 }

Listing 23: Timed Rebeca Model - First implementation of request handler (message server).

The message server depicts the shortest distance scheduling policy. Custom functions

erlang.contains() and erlang.absolutevalue() are explained in Section 6.2.2
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1 msgsrv handleElevatorMovement(int movement)

2 {

3 /* Movement for elevator 1 - Up Priority Policy */

4 if(sender == el1 && movement != 0) { /* If Elevator is moving */

5 el1movement = movement;

6 if(movement == -1) { el1location -= 1; }

7 else if(movement == 1) { el1location += 1; }

8

9 if(el1queue.size() > 0) { /* Are we on a requested floor. or should we move on? */

10 if(erlang.contains(el1queue,el1location) != -1) {

11 el1queue.remove(el1location);

12 el1movement = -2;

13 el1.stopOpen(el1location);

14 } else {

15 if(erlang.next(el1queue,el1location,1) != -1) { /* Try to go up first. */

16 el1movement = 1; el1.moveUp(el1location); }

17 else {

18 el1movement = -1; el1.moveDown(el1location); } /* Then down. */

19 }

20 }

21 }

22 else if(sender == el1) { /* If elevator just stopped */

23 el1movement = movement;

24 if(el1movement == 0 && el1queue.size() > 0) { /* Should we restart the elevator. */

25 if(erlang.next(el1queue,el1location,1) != -1) {

26 el1movement = 1;

27 el1.moveUp(el1location); }

28 else {

29 el1movement = -1;

30 el1.moveDown(el1location); }

31 }

32 }

33 ... /* Movement for elevator 2 - Up Priority Policy */ ...

34 }

Listing 24: Timed Rebeca Model - First implementation of movement handler (message server).

The message server depicts the up priority movement policy. In the example we only show code

for movement handling for elevator 1. Same code applies for elevator 2, but with replacement of

the variables el1movement and el1location. Custom functions erlang.contains() and erlang.next()

are explained in Section 6.2.2.



76 Event-based Analysis of Real-Time Actor Models

6.2.2 Model Extensions with Custom Functions

As discussed in Chapter 3, we extended Timed Rebeca to be able to use custom Erlang
functions. This made us capable of using Erlang functions for specific behaviors that
we were not able to do with Timed Rebeca. The extension consisted of three custom
functions:

• Function that obtains absolute value of an integer.

• Function that checks if an element exists in a list.

• Function that checks integers as floors in a list and returns the closest floor based
on location and direction.

The custom functions are shown in Listings 25, 26 and 27 and are used in handleEleva-

torMovement and handleRequest in Listings 23 and 24 respectively.

1 contains([],_) -> -1;

2 contains([H|T],E) ->

3 if

4 E == H -> 1;

5 true -> contains(T,E)

6 end.

Listing 25: Custom function - Check if an

element exists in a given list. Returns 1 if found,

otherwise -1.

1absolutevalue(I) ->

2case is_number(I) of

3true -> abs(I);

4false -> -1

5end.

Listing 26: Custom function - Absolute value

for an integer

These functions help us to decide which elevator is closest to a floor request and should
be sent the request. Also we are capable to check if an element has already been added
to a list which contained pending requests to an elevator. Double request was not allowed
and will be ignored. The function absolutevalue shown in Listing 26 takes an integer
and simply returns the absolute value using abs function in Erlang. This makes it easy
to calculate the distance from the elevator’s current floor and the request that is pending,
with erlang.absolutevalue ( requestFloor-elevatorLocation ) where requestFloor and ele-
vatorLocation are both integers. The function contains takes a Timed Rebeca list (Erlang
lists) and an integer. It then checks if the head of the list is equal to the given integer and
recursively uses the tail of the list as the next list to check. This continues until either
the list is empty and returns −1 or we have a match and return 1. The function is called
by using erlang.contains ( requestList, elevatorLocation ) where requestList is a list of
integers and elevatorLocation is an integer.
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The functions next with arity of 3,4, and 5 is a function that helps us in modeling the
movement of the elevators. That is, they help to decide whether the elevator should go
up or down, given a list of requests, current position and moving direction. The moving
direction is the same as in our model, and identifies moving up with 1, moving down
with -1 and not moving with 0. The function is called by using erlang.next ( requestList,
elevatorLocation, elevatorMovement ) where requestList is the list of integers, elevator-
Location and elevatorMovement are also integers. If requestList contains a higher integer
then elevatorLocation, with elevatorMovement as 1, it would return the closest integer
that is higher than elevatorLocation. If no integer is higher or equal to the elevatorLoca-
tion it will return -1. Also if requestList contains a lower integer then elevatorLocation,
with elevatorMovement as -1, it would return the closest integer that is lower than eleva-
torLocation.

1 % next/3

2 next([],_,_) -> -1;

3 next(List,CurrentFloor,Movement) -> next(List,CurrentFloor,Movement,List).

4

5 % next/4

6 next([H|T],CurrentFloor,Movement,ListCopy) ->

7 if

8 Movement == -1, H < CurrentFloor -> next(ListCopy,CurrentFloor,Movement,H,ListCopy);

9 Movement == 1, H > CurrentFloor -> next(ListCopy,CurrentFloor,Movement,H,ListCopy);

10 CurrentFloor == H -> H;

11 true -> next(T,CurrentFloor,Movement,ListCopy)

12 end;

13 next([],_,_,_) -> -1.

14

15 % next/5

16 next([H|T],CurrentFloor,Movement,Output,ListCopy) ->

17 if

18 Movement == -1, H > Output, H =< CurrentFloor ->

next(T,CurrentFloor,Movement,H,ListCopy);

19 Movement == 1, H < Output, H >= CurrentFloor ->

next(T,CurrentFloor,Movement,H,ListCopy);

20 true -> next(T,CurrentFloor,Movement,Output,ListCopy)

21 end;

22 next([],CurrentFloor,Movement,Output,ListCopy) ->

23 if

24 Movement == -1, Output == CurrentFloor, ListCopy /= [] ->

next(ListCopy,CurrentFloor,1,Output,[]);

25 Movement == 1, Output == CurrentFloor, ListCopy /= [] ->

next(ListCopy,CurrentFloor,-1,Output,[]);

26 true -> Output

27 end.

Listing 27: Custom function - Get next integer (floor) based on elevator direction (1 up and −1
down) and location (integers). The function goes through the given elevator list and checks if there

is a request to finish next based on the location and direction of the elevator. The function returns

the next floor as an integer or -1 if the list is empty.
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6.2.3 Safety Verification

As explained in the previous chapter, we only explore safety properties in Timed Rebeca
model. For this case study, we wanted to check the following conditions:

• Elevators only travel to and from the defined floors in the model.

• Elevators only stop on defined floors in the model.

• Elevators only stop on a floor if a request matching the floor is in the queue.

• Request lists of the elevators never got size over 3.

For the model to be feasible for verification we constructed a smaller model of 3 floors.

The following properties were defined as the safety monitor in Listing 28. The safety
monitor is based on the Timed Rebeca Template presented in Chapter 4. The first imple-
mentation had an error in it which was detected while checking the second property in
Table 6.6. The counter-example showed that one of the checkpoints had been assigned
the term 4, meaning that an elevator was moving to the 4th floor. This was an error as
floor 4 was not defined in the model. This was due to an error on line 99, 103, 111 and
115 seen in Listing 22. This error made it possible to send the next floor request in a list as
a parameter to moveUp or moveDown messages server instead of the current floor. When
floor 3 sent message to request a floor the checkpoint in line 34 and 40 ended having the
term 4. This is because the next request location (obtained with the custom function in
Listing 27) was sent instead of the current elevator location as the message parameter.
This was corrected by replacing it with the current elevator locations (el1location and
el2location).
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1monitorType() -> safety.

2

3init(_) -> {ok, satisfied}.

4

5stateChange(_,satisfied,Stack) ->

6Actions = actions(Stack),

7checkTermMinValue(Actions,elevatorLocation,0),

8checkTermMaxValue(Actions,elevatorLocation,3),

9checkTermValue(Actions,elevator1StopReqInList,-1),

10checkTermValue(Actions,elevator2StopReqInList,-1),

11checkTermMaxValue(elevator1QueueSize,3),

12checkTermMaxValue(elevator2QueueSize,3).

Listing 28: Safety properties for the elevator system with 3 floors

Safety properties for the elevator system with 3 floors. The term of

checkpoint elevatorLocation is between 0 and 3. The term of checkpoints

elevator(1,2)StopReqInList is not equal to −1. The term of checkpoints

elevator(1,2)QueueSize is not higher then 3.

Table 6.6 shows the verification results, both for experiments 1 (with the error) and 2
(without the error).

The monitor defined in Listing 28 (line 7-10) checks if the checkpoint elevatorLoca-

tion term is always between 0 and 3. Furthermore it checks if the checkpoint eleva-

tor1StopReqInList and elevator2StopReqInList is never −1, as it means an elevator is
stopping at a floor that is not in either of the request queues.

Table 6.6 shows that our requirements are satisfied, which makes it feasible for us to do the
performance evaluation of our model with the current policies (presented in Listings 24
and 23). The first evaluation can be used as a baseline for implementation improvements
when implementing new policies.
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Experiment # Description Movement
Delays

Open Close
Delays (1,2,3,4) Result

1 Location 0 > 2 1,2,4,6
Satisfied

(40929 states) 112.2 seconds

1 Location < 3 2 1,2,4,6
Violation To High [4]

(4542 states) 98.0 seconds

1 Stop Queue 1 2 1,2,4,6
Satisfied

(40929 states) 115.5 seconds

1 Stop Queue 2 2 1,2,4,6
Satisfied

(40929 states) 112.3 seconds

1 Queue 1 < 3 2 1,2,4,6
Satisfied

(40929 states) 110.4 seconds

1 Queue 2 < 3 2 1,2,4,6
Satisfied

(40929 states) 111.0 seconds

2 Location 0 > 2 1,2,4,6
Satisfied

(40929 states) 112.4 seconds

2 Location < 3 2 1,2,4,6
Satisfied

(40929 states) 111.6 seconds

2 Stop Queue 1 2 1,2,4,6
Satisfied

(40929 states) 110.5 seconds

2 Stop Queue 2 2 1,2,4,6
Satisfied

(40929 states) 109.5 seconds

2 Queue 1 < 3 2 1,2,4,6
Satisfied

(40929 states) 109.4 seconds

2 Queue 2 < 3 2 1,2,4,6
Satisfied

(40929 states) 109.2 seconds
Table 6.6: Safety verification for implementation 1 of the elevator system. Experiment #1 has an
error which was then corrected when Experiment #2 was carried out.

6.2.4 Evaluation of Policies

For forming a baseline of how the elevator system performs we used the elevator model
structure presented in Listing 22 with scheduling policy which we named shortest dis-

tance and a moving policy named up policy. These policies are presented in Listings 23
and 24. The scheduling policy dispatches requests to elevators depending on the distance
between the location of the elevator and the requested floor. The movement policy moves
the elevator while there is still requests pending for an elevator with priority of going up,
meaning that the elevator only moves down when there is no requests for higher floors
pending. For better understanding a pseudo Timed Rebeca code of the first implemen-
tation of the scheduling policy is presented in Listing 29 and the movement policy is
presented in Listing 30.

Checkpoints that mark requests from floors are global while checkpoints that end a re-
quest (included in elevators) are restricted. This is because we don’t want floor request
from elevator 1 to be ended with elevator 2 and vice versa. Global and restricted types of
checkpoint are explained in Chapter 5 and is used when doing paired-checkpoint analy-
sis.
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1 /* Scheduling policy: Shortest distance

policy. */

2 ...

3 /* Check if any elevators are already

located on the requested floor */

4 int el1distance =

erlang.absolutevalue(floor-el1location);

5 int el2distance =

erlang.absolutevalue(floor-el2location);

6 ...

7 else if(el1distance > el2distance) {

8 el2queue.insert(floor);

9 } else {

10 el1queue.insert(floor);

11 }

12 ...

Listing 29: Timed Rebeca pseudo code -

Scheduling policy: Shortest distance. The

variable floor is an integer representing the floor

request.

1/* All Other Possibilities */

2/* Movement policy: Up priority Policy. */

3...

4/* Check if elevators are on the requested

floor before moving */

5...

6if(erlang.next(el1queue,el1location,1) !=

-1) {

7el1movement = 1;

el1.moveUp(el1location); }

8else {

9el1movement = -1;

el1.moveDown(el1location); }

Listing 30: Timed Rebeca pseudo code -

Movement policy: Up priority.

For the elevator model, the initial performance evaluation was paired-checkpoint analysis
which gives us more insight in how the first implementation of the system performs.

We used timedrebsim to execute 10 simulation, each with 1500 random floor requests
with delay of 2 time units. Delay of the elevator movement was 2 time units and the delay
of an elevator door opening, and closing was set to a non-deterministic choice of 1, 2, 4
or 6 time units.

The simulation was then followed by executing timedrebanalysis with the option of group-
ing checkpoints by their terms. This allowed us to return multiple results for the label of
the starting checkpoint, each result representing a floor. The starting checkpoint was con-
figured with the label startRequestFloor and is included in the message server request-
Floor in all of the floor rebecs, or the message server callElevator in either of the elevator
rebecs. Term of the checkpoint is the floor requested by the pers rebec or the elevator
identity (floor number). Ending checkpoint configured was the label endRequestElevator.
The ending checkpoint is always included when either of the elevator gets a message to
the message server stopOpen. Term of the checkpoint is always the current floor of the
elevator.

Response analysis of implementation 1 is presented in Table 6.7. As expected the results
was noticeably better for the higher floors in the model.
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Floor Expected
Response

Standard
Deviation

Median
Response

Max (WCET)
Response

Min (BET)
Response

Checkpoint
pairs

1 58.5 76.2 29.0 683 1 4772
2 44.4 61.0 18.0 564 1 5591
3 33.1 46.1 14.0 467 1 6568
4 24.5 30.6 12.0 317 1 7361
5 20.6 21.6 13.0 196 1 7880
6 17.5 14.6 13.0 131 1 8182
7 14.6 10.9 12.0 85 1 8615
8 13.4 10.6 11.0 82 1 8966
9 14.7 12.3 11.0 89 1 8777
10 18.0 13.3 15.0 99 1 8442

Table 6.7: Paired-checkpoint Analysis - Scheduling policy: Shortest distance. Movement Policy:
Up priority.

The results in Table 6.7 called for another policy for movement of the elevators as we
wanted more fairness in serving requests coming from floors. Implementation 2 of the
model included a new movement policy named maintain movement. The policy is pre-
sented in pseudo Timed Rebeca code in Listing 31. This implementation maintains move-
ment of the elevator and continues in the former direction.

1 /* All Other Possibilities */

2 /* Movement policy: Maintain movement Policy. */

3 ...

4 /* Check if elevators are on the requested floor before moving */

5 ...

6 /* If elevator queue is not empty: */

7 /* If movement is UP and there is a request higher then the

current floor then go up. Otherwise go down. */

8 if(movement == 1) {

9 if(erlang.next(el1queue,el1location,1) != -1) { el1movement = 1;

el1.moveUp(el1location); }

10 else { el1movement = -1; el1.moveDown(el1location); }

11 }

12 /* ElseIf movement is DOWN and there is a request lower then the

current floor then go down. Otherwise go up. */

13 else {

14 if(erlang.next(el1queue,el1location,-1) != -1) { el1movement =

-1; el1.moveDown(el1location); }

15 else { el1movement = 1; el1.moveUp(el1location); }

16 }

17 ...

Listing 31: Timed Rebeca pseudo code - Movement policy: Maintain
movement. Example code for elevator 1.

Safety verification of an abstracted version of the model (3 elevators) for implementation
2 was executed with same properties as for implementation 1. The properties are defined
in Listing 28. All the properties were satisfied and stored 40929 states with 99243 transi-
tions. The average time of verification process for each property was 113.9 seconds.
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For performance evaluation of implementation 2, we again used timedrebsim with the
same options as before. The simulation was then followed by executing timedrebanalysis

to carry out the paired-checkpoint analysis. Results for paired-checkpoint analysis are
presented in Table 6.8.

Implementation 2 of the model showed more fairness in response times of serving requests
coming from floors. In addition we got more floor requests finished (higher number of
checkpoint pairs), and less max response times for all floors.

Floor Expected
Response

Standard
Deviation

Median
Response

Max (WCET)
Response

Min (BET)
Response

Checkpoint
pairs

1 21.6 15.5 18.0 95 1 9004
2 17.3 14.1 12.0 87 1 9508
3 14.8 11.7 11.0 68 1 9926
4 14.6 10.5 12.0 72 1 9915
5 14.7 9.5 12.0 65 1 9762
6 14.6 9.7 12.0 62 1 9915
7 14.3 10.4 11.0 77 1 9919
8 14.8 11.8 11.0 80 1 9930
9 17.1 13.9 12.0 81 1 9555
10 21.7 15.5 17.0 86 1 9021

Table 6.8: Paired-checkpoint Analysis - Scheduling policy: Shortest distance. Movement policy:
Maintain movement.

Based on the results presented in Table 6.8 we wanted to propose a new implementation to
reduce the response time of processing requests and increase the finished requests (more
requests served because of floor request being served faster). The new implementation
(implementation 3) involves in changing the policy of scheduling requests between ele-
vators. Implementation of the scheduling policy is presented in Listing 32. The policy
takes into account the movement of both elevators. Like in the initial scheduling policy
we check for the shortest distance and in addition then check if it is moving in the right
direction, if not we try the other elevator.
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1 /* Scheduling policy: Shortest distance policy with movement priority. */

2 ...

3 /* Check if any elevators are already located on the requested floor */

4 ...

5 else if(el1distance > el2distance) {

6 /* if floor request is higher then current el2 location and moving towards */

7 if(floor > el2location && el2movement == 1) {

8 el2queue.insert(floor); }

9 /* if floor request is lower then current el2 location and moving towards */

10 else if(floor < el2location && el2movement == -1) {

11 el2queue.insert(floor); }

12 /* el2 not moving towards request try the other elevator */

13 else if(floor > el1location && el1movement == 1) {

14 el1queue.insert(floor); }

15 else if(floor < el1location && el1movement == -1) {

16 el1queue.insert(floor); }

17 else { el2queue.insert(floor); }

18 } else {

19 /* if floor request is higher then current el1 location and moving towards */

20 if(floor > el1location && el1movement == 1) {

21 el1queue.insert(floor); }

22 /* if floor request is lower then current el1 location and moving towards */

23 else if(floor < el1location && el1movement == -1) {

24 el1queue.insert(floor); }

25 /* el1 not moving towards request try the other elevator */

26 else if(floor > el2location && el2movement == 1) {

27 el2queue.insert(floor); }

28 else if(floor < el2location && el2movement == -1) {

29 el2queue.insert(floor); }

30 else { el1queue.insert(floor); }

31 }

32 ...

Listing 32: Timed Rebeca pseudo code - Scheduling policy: Shortest distance with
movement priority. Triple dots [...] denotes skipped code which is already written in

Listings 22 and 23. The variable floor is the requested floor number sent by the pers

rebec.

For implementation 3 we safety checked an abstracted version of the model (3 elevators).
The verification used same properties as for implementation 1 and 2. The properties
are defined in Listing 28. All the properties were satisfied and stored 41239 states with
101343 transitions. The average time of verification process for the properties was 119.1
seconds.

Before being able to do performance evaluation we again used timedrebsim with the
same settings as before and followed by using timedrebanalysis to carry out the paired-
checkpoint analysis. Results for paired-checkpoint analysis of implementation 3 are pre-
sented in Table 6.9.
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The third implementation did not yield better results, as response times were higher on
average. In addition to higher response time we had less finished requests.

Floor Expected
Response

Standard
Deviation

Median
Response

Max (WCET)
Response

Min (BET)
Response

Checkpoint
pairs

1 28.3 19.9 24.0 99 1 6767
2 22.4 17.9 17.0 92 1 7420
3 18.7 15.0 14.0 90 1 8168
4 16.7 12.5 14.0 78 1 8444
5 16.3 11.0 14.0 67 1 8457
6 16.2 10.9 14.0 63 1 8688
7 16.8 12.3 14.0 73 1 8449
8 18.6 15.0 14.0 79 1 8142
9 21.6 17.6 17.0 92 1 7691
10 28.1 19.9 24.0 103 1 6843

Table 6.9: Paired-checkpoint Analysis - Scheduling policy: Shortest distance with movement
priority. Movement policy: Maintain movement.

A checkpoint analysis of checkpoints with the label elevator1QueueSize and elevator2QueueSize

that is included in the beginning of handleRequest message server showed that the ele-
vator lists (queues) were not balanced. Figures 6.6 and 6.7 present checkpoint analysis
for both checkpoints. It should be noted that the presented plots are only for the first
simulation.

Figure 6.6: Checkpoint Analysis for elevator queue sizes (Implementation 2). Showing result for
simulation 1. Moving Average smoothing with degree of 10 and sample reduce period of 100
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Figure 6.7: Checkpoint Analysis for elevator queue sizes (Implementation 3). Showing result for
simulation 1. Moving Average smoothing with degree of 10 and sample reduce period of 100

1 /* Scheduling policy: Shortest distance policy with load balancing. */

2 ...

3 /* Check if any elevators are already located on the requested floor */

4 ...

5 else if(el1distance > el2distance) {

6 if(el2queue.size() < el1queue.size() || el2queue.size() == el1queue.size()) {

7 el2queue.insert(floor);

8 } else {

9 el1queue.insert(floor); }

10 }

11 else {

12 if(el1queue.size() < el2queue.size() || el1queue.size() == el2queue.size()) {

13 el1queue.insert(floor);

14 } else {

15 el2queue.insert(floor); }

16 }

17 ...

Listing 33: Timed Rebeca pseudo code - Scheduling policy: Shortest distance with
load balancing. Triple dots [...] denotes skipped code which is already written in

Listings 22 and 23. The variable floor is the requested floor number sent by the pers

rebec.

Following the results of checkpoint analysis of implementation 2 and 3, we proposed
a new scheduling policy. This policy was to take into account the size of the elevator
queue before dispatching the request to it. Dispatching of requests are then based on
the queue size of an elevator. This policy was to give each elevator more time to carry
out pending requests as the queues were to be more balanced and to have less requests
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pending than before. Therefore it was to yield for better response times and more finished
requests.

The results for implementation 4 showed some better results than implementation 3 as the
maximum response was noticeably lower and more requests were served on average. Fur-
thermore, comparing checkpoint analysis of implementation 2 and 3 depicted in Figures
6.6 and 6.7 with implementation 4 in Figure 6.8 we see that the elevator queues are more
balanced in most cases.

Floor Expected
Response

Standard
Deviation

Median
Response

Max (WCET)
Response

Min (BET)
Response

Checkpoint
pairs

1 28.1 16.4 28.0 79 1 7096
2 22.9 15.3 21.0 76 1 7554
3 18.9 13.0 16.0 67 1 8161
4 16.8 10.9 14.0 64 1 8354
5 15.5 9.2 14.0 53 1 8600
6 15.6 9.5 14.0 52 1 8695
7 16.5 10.9 14.0 63 1 8457
8 19.2 13.2 16.0 66 1 8071
9 22.7 15.2 21.0 68 1 7627
10 28.4 16.7 28.0 85 1 7140

Table 6.10: Paired-checkpoint Analysis - Scheduling policy: Shortest distance with load bal-
ancing. Movement policy: Maintain movement.

Figure 6.8: Checkpoint Analysis for elevator queue sizes (Implementation 4). Showing result for
simulation 1. Moving Average smoothing with degree of 10 and sample reduce period of 100
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6.2.5 Analysis Conclusion

The results presented in this case study was from 4 implementations, where implemen-
tation 2 had the best response time and most requests finished. Implementation 4 which
used load balancing to dispatch requests to elevators had the lowest worst case response
time but unexpectedly did not result in better results comparing to implementation 2.
The most inefficient implementation was the first one, which was expected because of
an unreasonable movement policy. An interesting finding was that implementation 3 did
not yield better results (less average time of the elevator finishing a request) than imple-
mentation 2 and 4 as one would expect thinking that taking into account the direction of
movement of the elevator in dispatching requests will be helpful. That is, if the elevator
is moving towards or away from the requested location. This presents how difficult it can
be to predict complex systems behavior without proper analysis. Summary of the results
are shown in Table 6.11.

Note that each experiment simulated 10 ∗ 15000 (150000) requests which showed that
49.9%, 35.7%, 47.2%, and 46.8% for implementations 1, 2, 3 and 4 respectively were
already pending in the queue at the starting time for some random floor requests. If a
floor request is made that is already in either of the elevators queues, we ignore it (think
of it like a person pushing the same button often, which accounts for one request only).
Having less response time (elevator finishing floor request in less time) makes the elevator
able to serve more request, because we ignore less floor requests. Table 6.11 shows how
average response correlates with total of finished requests.

Implementation Expected response
(Average)

Median response
(Average)

Max response
(Average)

Total finished
requests

1 25.93 14.8 271.3 75154
2 16.55 12.8 77.3 96455
3 20.37 16.6 83.6 79069
4 20.46 18.6 67.3 79755

Table 6.11: Experimental results summary for the elevators.
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Chapter 7

Related Work

This thesis presents two methods of analyzing models, one using formal verification to
verify if the specification for a model is satisfied and one for validating if it meets the
intended performance requirements.

This calls for two classes of related works:

• Modeling languages that provide tools to do formal verification, and

• simulation tools that offer analyzing methods for performance evaluation.

7.1 UPPAAL

UPPAAL is an integrated tool environment for modeling, validation and verification of
real-time systems modeled as networks of timed automata, extended with data types
(bounded integers, arrays etc.). The tool is currently the most well-known model checker
for real-time systems. While tools and specification formalisms like UPPAAL are quite
successful at real-time verification, there is still a need to reason about timed behavior in
other specification and programming languages, using dedicated model checkers. How-
ever, many of these model checkers do not implement tailored real-time verification algo-
rithms (Region Graphs and Zones) like UPPAAL. Instead of that, they are used to check
timed behavior by discretizing time, and by using normal model checking algorithms for
the LTL and CTL logics (Larsen, Pettersson, & Yi, 1995; Earle & Fredlund, 2012).

Timed Rebeca and UPPAAL differ greatly in what is captured by the model in each tool.
UPPAAL allows us to model synchronous time varying behaviors while Timed Rebeca
focuses on distributed and asynchronous agents.
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7.2 Real-Time Maude

Real-Time Maude is a language for formal specification and analysis of real-time and
hybrid systems. The specification formalism is based on rewriting logic, emphasizes gen-
erality and ease of specification, and is particularly suitable to specify object-oriented
real-time systems. The tool offers a wide range of analysis techniques, including timed
rewriting for simulation purposes, and time-bounded linear temporal logic model check-
ing. It has been used to model and analyze sophisticated communication protocols and
scheduling algorithms. Real-Time Maude is an extension of Maude and a major redesign
of an earlier prototype (Ölveczky & Meseguer, 2007).

Timed Rebeca and Real-Time Maude are different in the computational paradigms that
they naturally support. Real-Time Maude is a lower level language than Timed Rebeca.
It allows modellers to control what computational model they base their model on, as
long as it can be expressed in rewriting logic. Timed Rebeca is based on actor based
model of computation. Timed Rebeca benefits from its similarity with other commonly
used programming languages and is more suspectible to get used by modellers without
intimate knowledge of the theory behind modelling. Translating Timed Rebeca to Real-
Time Maude is a interesting project as Real-Time Maude tool has various ways to analyze
timed systems.

7.3 Traviando

Traviando is a project that emphasizes on trace analysis of discrete event simulations
(Kemper & Tepper, 2009). The design goal for Traviando is to make a simple and straight-
forward way to shed light on what happens over a series of simulation experiments. This
is for the modeler to understand what really happens when simulating. The name Tra-
viando is for the corresponding software package that implements these concepts.

Like in our project, Traviando uses generated traces from a simulation to analyze mod-
els. It provides some statistical information about variable changes and occurrences of
method executions in a model. In addition to the statistical methods mentioned it pro-
vides progress information (detecting cycling behaviors), visualization, and model check-
ing based on traces (Kemper, 2007; Klock & Kemper, 2010).

As a comparison to Timed Rebeca, we see that we are providing similar methods as Tra-
viando does (statistical information and visualization of the simulation). Furthermore, a
project that was introduced in parallel to our current project presented a property language
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TeProp (Magnusson, 2012). The modeler can use TeProp to specify temporal proper-
ties and then check the properties on the simulation traces that are stored in a relational
database.

Traviando uses models written with the ProC/B and Möbius modeling languages. ProC/B
is a modeling language that is especially designed for the needs of logistics networks.
It is the common specification language of the collaborative research center "Modeling
of Large Logistics Networks" at the university of Dortmund (Kemper & Tepper, 2005).
Möbius is a multi-paradigm multi-solution frame-work for the performance and depend-
ability assessment of systems. It supports multiple ways to create large and complex
models in a compositional manner (Deavours et al., 2002). These languages support wide
area of paradigms but seem to lack the ability to model systems with asynchronous and
distributed features.

7.4 RapidRT

RapidRT (Lu, Nolte, Kraft, & Norstrom, 2010) is based on Extreme Value Theory (EVT)
(Beirlant, 2004), which was first introduced in 1958 and is a separate branch of statistics
for dealing with the tail behavior of a distribution. Extreme Value Theory is used to model
the risk of the extreme, rare events, without the vast amount of sample data required by a
brute-force approach. Example applications of EVT include risk management, insurance,
hydrology, material sciences, and telecommunications.

The tool emphasizes on finding worst-case response times (WCRT) by using Extreme
Value Theory, capturing these rare events. This is done by an algorithm that combines
Extreme Value Theory and other statistical methods in order to produce a probabilistic
WCRT estimate. This algorithm uses Monte Carlo simulations to be able to guide simu-
lations to be more probable in catching these behaviors.

For comparison, this project presents worst case response times in a simpler fashion (com-
paring with paired-checkpoint analysis). We only simulate with an algorithm that chooses
next transition in each state of th model randomly instead of guiding it differently. This
however proposes valuable future work for analyzing Timed Rebeca models.
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Chapter 8

Conclusions and Future Work

8.1 Conclusion

This thesis presents a number of results by using examples and experimental case studies.
We introduced some extensions that improve the usability of Timed Rebeca. In addition
we present a modified mapping to Erlang which has support for McErlang newly intro-
duced timed semantics.

For verification of Timed Rebeca we examined how to utilize McErlang by using safety
monitors to verify properties for Timed Rebeca models. This was done using case studies
and examples. Furthermore, we proposed a template that makes it easier for the modeler
to write properties as it can be troublesome to write them without Erlang programming
knowledge.

For validation of models we introduced performance evaluations methods. These methods
were applied on simulations generated from McErlang. The method showed how infor-
mative it can be to have statistical analysis and visualization over the simulation results.
All provided methods were explained with examples to give the reader better understand-
ing.

In addition to the examples throughout the thesis we presented typical case studies that
showed the applicability of our methods and tools.

We find that Timed Rebeca and our tools can offer great value in analyzing systems with
asynchronous message based patterns. Research for these kind of systems seem to be
somewhat unattended, yet can describe many real life implementations such as mod-
ern messaging (Facebook, Twitter and Google Talk) or the use of web services in gen-
eral.
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8.2 Future Work

This thesis is a part of a larger project of analyzing asynchronous event-based models.
The project offers opportunities for multiple interesting research questions in terms of
how to analyze these models. Next paragraphs proposes some future works that we find
interesting follow up from this project.

• Detection of invalid models. Detection of invalid models is of a high value before
starting any analysis of a model. Effects like the Zeno-behaviors (infinite number
of events happening in a finite amount of time) and other cycling behaviors can
show itself as a major flaw in models. Certain modeling scenarios can also produce
invalid models, for example one that can produce infinite clock reference in the
translated code due to the use of deadlines in Timed Rebeca. These kind of faults
can make the model infeasible for model checking or simulation.

The use of static analysis would limit some of these problems and could provide
interesting work.

• LTL properties and monitors. Automatic monitor generation for verification
based on a simple property language that can support linear temporal logic (LTL)
properties. This monitor generation could create monitors that allow McErlang to
verify LTL properties based on checkpoints within a Timed Rebeca model. For ex-
tending the verification process one could add a new syntax marking a permanent
probe generation in the translated Erlang code. This is done in the translated code by
using the McErlang function mce_erl:probe_state(Label::term,Term::term). The
function marks all future states with the label and the term until it is deleted with
mce_erl:del_probe_state(Label::term()) (Earle & Fredlund, 2008). Temporal logic
(LTL) properties then can be encoded to a Büchi automaton that can interface with
a monitor in McErlang. Given a program and such an automaton, McErlang will
run them in lockstep letting the automaton investigate each new program state gen-
erated. With this we could check with temporal logic formulas whether probes
(generated with our new syntax) will hold in certain states or not.

An automated generation of these monitors should be done as they typically need
experienced individual to carry them out.

• Custom simulation algorithms. New algorithms for simulations to be more "clever",
could open up new research questions that involves validating models (or even par-
tially verifying) as we could get more coverage of the model’s state-space without
using brute-force manners to explore the state-space. This may not be interesting
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in regards to some performance analysis methods as we want repeated behaviors to
happen randomly and not be guided differently. However, it could give us better
estimates on methods like worst case response time (WCET) using Monte Carlo
simulation with the use of statistical techniques like in the project Traviando dis-
cussed in Related Works (Kemper & Tepper, 2009).

• Real-time analysis. Real-time on-the-fly calculation while simulating could pro-
vide the modeler a richer experience. A user interface could be implemented based
on our simulation and analysis components in this project. We should then provide
on-the-fly statistical calculations and visualization of simulation results.

• Support for other analysis tools. Multiple analysis tools have been introduced
that we could benefit from. Tools like NS2, ProC/B toolset, APNN, and Möbius
provide with the same type of simulation generated output making other tools able
to do analysis on them. By making our generated trace output compatible with
other analysis tools we would expand the analysis possibilities.

• Translation refinements. A research question that is related to provide a more ef-
ficient translation to Erlang, could be an interesting one. Not much has been done
on explore new ways to make the translation produce smaller state-space within
McErlang. Ideas like exchanging dictionaries in the translated code with records
(two dictionaries with the same set of elements can be nonequivalent due to order
of insert) in Erlang could be an example and could provide us with a better normal-
ization (finding equivalent states) of states in McErlang.

8.2.1 Timed Rebeca Discussion.

We belive that Timed Rebeca is a natural and easy to use language for modeling dis-
tributed and asynchronous systems. Despite of that, we want to propose ideas of new
constructs and extensions for Timed Rebeca that can make the language more efficient.
Ideas brought up here are based on experience while modeling systems and examples in
this project. The constructs and extension that could ease and extend the operability of
Timed Rebeca can be:

• A construct for periodic behavior. Rather then modeling periodic behavior, we
can add a construct for periodic behavior. This construct could have parameters to
define the message server to be sent periodically, its parameters, and the time period
to send it.

periodic(rebec.messageServer, period, parameters);
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• Enumeration types. While only having the types integer and boolean, we fre-
quently use a sub-range of integers in our models. Example could be like the ele-
vator case study in Chapter 6. There we present movements as 1 (up), -1 (down),
and 0 (idle). Instead we should define an enumerable variable with the types up,
down, and idle. This would simplify the syntax of the model and make it more
understandable.

enum floors = up, down, idle;

• Dynamic creation of rebecs. One thing missing in the mapping is the support of
dynamic creation of rebecs. This addition would extend the usability of the lan-
guage and could for example allow us to model P2P protocols or the Gossip Com-
munication protocol, both which need dynamic creation of nodes to be successfully
modeled.
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Appendix A

Timed Rebeca Additional Examples

An example of using lists in Timed Rebeca

Adding lists in Timed Rebeca is an extension that provides us to model behaviors that
are frequently used in today’s systems where buffers and queues are essential. As seen in
Table 3.1 lists can contain the data type integer and are converted to list in Erlang. Lists
can be stated as a local variable or a state variable inside a reactive class or a message
server. Lists in Timed Rebeca are like arrays but without boundaries. They may grow and
shrink and are able to return the first or the last value of its containing integers.

Listing 34 presents an example of the functionality of lists in Timed Rebeca. The model
consists of one reactive class ListExample. Two rebecs listprocess1 and listprocess2 are
instantiated from the reactive class. Both rebecs are initialized by sending a message to
themselves. The message is received by the message server go with the parameter 1. The
parameter will then be inserted to the list numbericlist followed by assigning the size of
the list, first element of the list, and last element of the list to the local variables listsize,
firstelement, and lastelement respectively. Before the message server sends another mes-
sage to self and incrementing the parameter intAdd, it will remove the last integer of the
list. But only if the size of the list is equal or higher then 10.
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1 reactiveclass ListExample(3) {

2 knownrebecs { ListExample listproc }

3

4 statevars {

5 list<int> numericlist;

6 int index;

7 }

8

9 msgsrv initial() { self.go(1); }

10

11 msgsrv go(int intAdd)

12 {

13 //Insert into the list

14 numericlist.insert(intAdd);

15 // Operations on lists:

16 int listsize = numericlist.size();

17 int firstelement = numericlist.first();

18 int lastelement = numericlist.last();

19 //Remove a integer of the value lastelement from the list if the size is 10.

20 if(listsize >= 10) { numericlist.remove(lastelement); }

21 listproc.go(intAdd+1);

22 }

23 }

24

25 main {

26 ListExample listprocess1(listprocess2):();

27 ListExample listprocess2(listprocess1):();

28 }

Listing 34: Timed Rebeca Model - List example. The example models a list with upper bound 10,

the last item of the list will be deleted if trying to insert the 11th integer to the list numbericlist.

Lists are one of the mostly used data structures in Erlang (and all other functional pro-
gramming languages). Lists are used to solve many problems efficiently and easily by
using for example, higher-order functions. A given function can be easily applied to all
elements of a list and then return a new list with the applied results or we can simply go
through them recursively like in the presented custom function in Listing 36. It is very
convenient for the modeler to have the ability to use lists in Timed Rebeca. It gives us the
ability to use lists with manipulative features in native Erlang by using custom function
which is discussed in the next section.
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An example of using Custom Functions in Timed Rebeca

To maintain the simplicity of the language we added the construct erlang, which allows
us to define custom functions in the form of a native Erlang code. Many behaviors often
need complicated operations, as the model presented in Listing 35. The model consists of
the reactive class CustomFunctionExample and has one rebec customprocess instantiated
from it. In the initial message server of customprocess, a message go is sent to itself. The
message then iterates sending a message go to itself. An insertion of a random integer to
the list numericlist is done by calling the insert statement (line 15). After 50 iterations
the custom function MaxNumberOfList 1 is called with the numericlist as the parameter.
This will result in assigning the highest integer in the list to the integer variable max. The
custom function MaxNumberOfList is presented in Listing 36.

1 reactiveclass CustomFunctionExample(3) {

2 knownrebecs {}

3 statevars { list<int> numericlist; int itterations; int max; }

4

5 msgsrv initial() {

6 itterations = 0;

7 max = -1;

8 self.go();

9 }

10

11 msgsrv go()

12 {

13 itterations = itterations + 1;

14 int number = ?[1:100];

15 numericlist.insert(number);

16

17 if(itteration < 50) { self.go(); }

18 else {

19 max = erlang.MaxNumberOfList(numericlist);

20 checkpoint(HighestRandomValue,max);

21 }

22 }

23 }

24 main {

25 CustomFunctionExample customprocess():();

26 }

Listing 35: Timed Rebeca Model - Get the maximum random number added to a list.

Calling Erlang functions from a Timed Rebeca model, increases the ability of modeling
more complicated behaviors that cannot be done with very simple constructs in Timed
Rebeca. Erlang functions gives Timed Rebeca all the features of Erlang while maintain-

1 The custom function is called with erlang.MaxNumberOfList(L(,...,Ln)), where L is a variable or a
set of variables
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ing the simplicity of the modeling language.

1 MaxNumberOfList([Head|Rest]) ->

2 MaxNumberOfList(Rest, Head).

3

4 MaxNumberOfList([], Res) -> Res;

5 MaxNumberOfList([Head|Rest], Max) when Head > Max ->

6 MaxNumberOfList(Rest, Head);

7 MaxNumberOfList([_Head|Rest], Max) -> MaxNumberOfList(Rest, Max).

Listing 36: Custom Erlang Function - Get the maximum number from a list.

Non-deterministic Process Evaluator

To show that the mapping and McErlang are providing us with a correct state space when
using expirations and non-deterministic constructs of Timed Rebeca we present another
example. The example is presented in Listing 37.

The formerly mentioned timed semantics of McErlang in Chapter 3 had the Erlang func-
tion timeRestricts that computed what transition should be enabled from a program state
giving us correct order of delayed messages (actions). This function is to take into account
the usage of clock references mentioned in the former sections of Chapter 3. This being
correct is crucial for us if we need to be able to evaluate expiration of a messages.

The model consists of two reactive classes, Process and Listener. One rebec listener is
instantiated from the reactive class Listener and two rebecs process1 and process2 are
instantiated from the reactive class Process. In the initialization of the rebec process1 a
message is sent to listener with after(2) and deadline(3). The rebec process2 is initialized
by sending a message to listener with an after(3) and deadline(4). The listener listens for
message from process1 and process2.
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1 env boolean delayEnabled;

2

3 reactiveclass Process(2) {

4 knownrebecs { Listener lsnr; }

5 statevars { }

6

7 msgsrv initial(int evalutationDelay, int messageDeadline)

8 {

9 lsnr.receive(delaybeforesend) after(evalutationDelay) deadline(messageDeadline);

10 }

11 msgsrv ack(boolean processed)

12 {

13 % Safety Property: All processed gets processed.

14 trace(isProcessProcessed, processed);

15 }

16 }

17 reactiveclass Listener(2) {

18 knownrebecs { Process process1 Process process2; }

19 statevars { bool processdelay; }

20

21 msgsrv initial(boolean enableProcessDelay) {

22 processdelay = enableProcessDelay;

23 }

24 msgsrv.receive(int delayLabel)

25 {

26 trace(processDelay,delayLabel);

27 if(processdelay == true) {

28 int nonDetDelay = ?(1,3);

29 delay(nonDetDelay);

30 }

31 sender.ack(true);

32 }

33 }

34 main {

35 Listener lsnr(proc1,proc2):(delayEnable); % Listener

36 Process proc1(lsnr):(2,3); % Delays by 2 before sending with a deadline of 3.

37 Process proc2(lsnr):(3,4); % Delays by 3 before sending with a deadline of 4.

38 }

Listing 37: Timed Rebeca Model - Non-deterministic Process Evaluator

For simplification purposes for the reader an abstracted Erlang translation was created
and presented in Listing 39 located in the Appendices B. The translation has clock ref-
erences defined before spawning and delaying for both processes. We demonstrates ex-
piration by replying to the sender process with "{deadlined,*}" otherwise with "{reply}"
message.

The model has an environment argument delayEnabled, that enables or disables a non-
deterministic delay of 1 or 3 time units before listener sends a message back to the sender
rebecs (process1 or process2).
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If the model has delayEnabled set to false, the listener rebec will not delay before sending
a message back to the sender after having received a message. McErlang showed a state
graph with one computation path when delayEnabled was set as false. The computation
path started with process1 to send a message listener and getting a reply message. Then
process2 sent a message listener and also got a reply message. This is the correct interpre-
tation when comparing it to formal semantics of Timed Rebeca as there is no expiration
of messages involved when setting delayEnabled to false.

To explore the non-deterministic behavior and expiration of messages in Timed Rebeca
we generated another state graph with McErlang, by setting delayEnabled to true. This
makes listener non-deterministically delay by 1 or 3 time units before sending a reply
message to the sender (process1 or process2). It should be noted that no messages can be
taken out of listener message bag while the delay occurs. With these settings McErlang
generated the state graph (depicted as a labeled transition system) presented in Figure
A.1.

As depicted in Figure A.1 we see that all paths start with the transition process1 to send the
message listener. When reaching state labeled 15, we branch as we then are exploding the
non-deterministic behavior shown in line 34 of the model presented in Listing 37.

When we branch, one transition (message), namely (15→ 10) explores the possibility of
having listener delay by 3 time units and having process1 get the reply message. Followed
by expiring the message from process2 and (replying it with {deadline,three} message in
the abstracted translation in Listing 39). The other transition, namely (15→ 12), explores
the possibility of delaying by 1 time unit that results in message from process2 to achieve
its deadline and get the reply message from listener.

It should be noted that after the transition (message) (15→ 12) we branch again with two
available transitions (messages). This is because the program has two possible transitions
(messages) available during this time.

• Firstly, listener can send a reply message to process1,

• Secondly, process2 can send a message to listener.
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Figure A.1: Labeled Transition System (state graph) for the non-deterministic process evaluator
model with delay enabled in listing 39. {...} brackets are message parameters.

This is a normal behavior as when the message from process1 is sent it happens at time
2. Following the delay(1) of listener the time has elapsed by 3 time units. This is the
exact time when process2 can send a message to listener. Therefore we explore both
possibilities that both have the same results.
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Appendix B

Abstract Erlang Translations

This chapter presents abstract Erlang translations for some Timed Rebeca models that
were discussed in this thesis. Translation presented in Listing 38 is of the competing
processes model in Listing 6. We abstract the initialization process to the Erlang method
start, which spawns three processes (Listener, Process 1 and Process 2). After the method
start has finished spawning the three processes, it waits for one message to show that a
reply message has arrived. Process 1 delays by 2 time units before sending the message
"two" to Listener and Process 2 delays by 3 time units before sending the message "three"
to Listener.

The second translation is presented in Listing 39. It shows an abstract translation of the
non-deterministic process evaluator model in Listing 37. This translation is based on the
first abstract translation, but with the addition of creating clock references before sending
a message to the listener. Note that we send the relative deadline value with messages
that come from Process 1 and Process 2. The Listener (deadliner in the code) evaluates
the clock references when a message is received with the relative deadline value. This is
done by using mce_erl_time:was() that reads the time of the reference. We then decide if
to send a "deadlined" or "ok" message back depending on if the clock reference elapsed
time was more than the relative deadline value. Note that we spawn a special process for
receiving messages (reaceivelistener in the code) as we want to receive more then one
message.
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1 start () −>
2 Pid = spawn(fun () −> Listener () end), % Listener
3 spawn(fun () −> timedelay(2) , Pid!{ self () , two} end), % Process1 − Delay 2.
4 spawn(fun () −> timedelay(3) , Pid!{ self () , three } end), % Process2 − Delay 3.
5 receive
6 { reply ,Msg} −> (io:format("~p~n", [Msg])) % Got Reply.
7 end.
8

9 Listener () −>
10 receive % Receives only one message.
11 {Pid , Msg} −> Pid!{reply,Msg} % Reply to the Process .
12 end.
13

14 timedelay( Milliseconds ) −>
15 receive
16 after ( Milliseconds ) −> ok
17 end.

Listing 38: Abstract Erlang Translation - Competing Processes Model
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1 start () −>
2 Pid = spawn(fun () −> deadliner () end), % Listener
3 TTone = mce_erl_time:nowRef(), % Clock Reference that is used when sending message with

after from Process 1.
4 spawn(fun () −> timedelay(2) , Pid!{ self () ,TTone,3,two} end), % Process 1
5 TTtwo = mce_erl_time:nowRef(), % Clock Reference that is used when sending message with

after from Process 2.
6 spawn(fun () −> timedelay(3) , Pid!{ self () ,TTtwo,4,three} end), % Process 2
7 receivelistener () . % Listener starts listening .
8

9 receivelistener () −>
10 receive
11 {ok,Msg} −> (io:format("Processed! ~p ~n", [Msg]));
12 {deadlined ,Msg} −> (io:format("Deadlined! ~p ~n", [Msg]))
13 end,
14 receivelistener () . % Restart the receive for Listener .
15

16 deadliner () −>
17 mce_erl: urgent () ,
18 receive
19 {Pid , TT, DL, Msg} −>
20 case compare(addTimeStampsD(milliSecondsToTimeStamp(DL), mce_erl_time:was(TT)),

mce_erl_time:now()) of
21 true −> nondetdelay(1,3) , Pid ! {ok, Msg}, mce_erl_time: forget (TT);
22 false −> Pid ! {deadlined , Msg}, mce_erl_time: forget (TT)
23 end
24 end,
25 deadliner () . % Restart the deadliner listener .
26

27 timedelay( Milliseconds ) −>
28 mce_erl: urgent ( Milliseconds ) ,
29 receive
30 after ( Milliseconds ) −> ok
31 end.
32

33 nondetdelay(Delay1,Delay2) −>
34 mce_erl: urgent () ,
35 mce_erl:choice
36 ( [fun () −> mce_erl:urgent () , timedelay(Delay1) end,
37 fun () −> mce_erl:urgent () , timedelay(Delay2) end]) .

Listing 39: Abstract Erlang Translation - Non-deterministic Process Evaluator Model
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Appendix C

Monitors
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Monitor Template for Timed Rebeca Checkpoints

The monitor presented in Listing 40 is a complete code for the Timed Rebeca Checkpoint
template. The template is explained in Section 4.2.3 and has predefined function to make
it easy for the modeler to write simple safety properties.

1 −module(monitor).
2 −export([ init /1, stateChange /3, monitorType/0]) .
3

4 −compile(nowarn_shadow_vars).
5 −compile(nowarn_unused_vars).
6

7 −include("$MCERLANG_HOME/src/include/stackEntry.hrl").
8

9 −behaviour(mce_behav_monitor).
10

11 −include(" state . hrl ") .
12 −include("process . hrl ") .
13 −include("node. hrl ") .
14

15 monitorType() −> safety .
16

17 init (_) −> {ok, satisfied } .
18

19 stateChange(_, satisfied ,Stack) −>
20

21 % Monitor Setup
22 % Usage: checkpoint(Label,Term);
23 % Note: Dropped message have "drop" label so its not needed.
24 CheckpointLabel = checkpoint_label , % Not needed for checking expired message probes .
25 CheckpointTerm = message_server_name,
26 % EOF
27

28 Actions = actions (Stack) ,
29 checkDropMsgsrv(Actions, CheckpointTerm).
30

31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
32 % Timed Rebeca Functions for Checkpoints %
33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34

35 % Check if Message Server Has an Expired Message
36 checkDropMsgsrv(Actions,MessageServer) −>
37 Value = [MessageServer],
38 case has_probe_with_tag(drop,Actions) of
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39 {true ,MsgSrv} −> checkDropMsgsrvReturn(MsgSrv,Value);
40 false −> {ok, satisfied }
41 end.
42 checkDropMsgsrvReturn(MsgSrv,Value) −>
43 case [MsgSrv] == Value of
44 true −> {droppedmessage,MsgSrv};
45 false −> {ok, satisfied }
46 end.
47

48 % Check if an checkpoint occur with Label
49 checkLabelCheckPoint(Actions,Label) −>
50 LabelL = [Label] ,
51 case has_probe_with_tag(Label,Actions) of
52 {true ,GetTerm} −> {foundlabel,{LabelL,GetTerm}};
53 false −> {ok, satisfied }
54 end.
55

56 % Check if an checkpoint Term is higher then some number.
57 checkTermMaxValue(Actions,Label,Term) −>
58 Value = [Term],
59 case has_probe_with_tag(Label,Actions) of
60 {true ,GetTerm} −> checkTermMaxValueReturn(GetTerm,Value);
61 false −> {ok, satisfied }
62 end.
63

64 checkTermMaxValueReturn(GetTerm, Value) −>
65 case GetTerm > Value of
66 true −> { violation_tohigh ,GetTerm};
67 false −> {ok, satisfied }
68 end.
69

70 % Check if an checkpoint Term is lower then some number.
71 checkTermMinValue(Actions,Label,Term) −>
72 Value = [Term],
73 case has_probe_with_tag(Label,Actions) of
74 {true ,GetTerm} −> checkTermMinValueReturn(GetTerm,Value);
75 false −> {ok, satisfied }
76 end.
77

78 checkTermMinValueReturn(GetTerm, Value) −>
79 case GetTerm < Value of
80 true −> { violation_tohigh ,GetTerm};
81 false −> {ok, satisfied }
82 end.
83
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84 % Check if an checkpoint Term is equal to some type .
85 checkTermValue(Actions,Label,Term) −>
86 Value = [Term],
87 case has_probe_with_tag(Label,Actions) of
88 {true ,GetTerm} −> checkTermValueReturn(GetTerm,Value);
89 false −> {ok, satisfied }
90 end.
91

92 checkTermValueReturn(GetTerm, Value) −>
93 case GetTerm == Value of
94 true −> { violation_tohigh ,GetTerm};
95 false −> {ok, satisfied }
96 end.
97

98 %%%%%%%%%%%%%%%%%%%%%%
99 % Support functions : %

100 %%%%%%%%%%%%%%%%%%%%%%
101

102 actions (Stack) −>
103 {Entry ,_} = mce_behav_stackOps:pop(Stack),
104 Entry#stackEntry . actions .
105

106 has_probe_with_tag(Tag,Actions) −>
107 lists : foldl
108 (fun (Action, false ) −>
109 mce_erl_actions : is_probe (Action) andalso
110 case mce_erl_actions : get_probe_label (Action) of
111 {Tag,Id} −> {true,Id} ;
112 _ −> false
113 end;
114 (_Action,Other) −> Other
115 end, false , Actions) .

Listing 40: Monitor Template for Timed Rebeca Checkpoints
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Appendix D

Revised Timed Rebeca Language
Description

The lexical structure of Timed Rebeca

Identifiers

Identifiers 〈Ident〉 are unquoted strings beginning with a letter, followed by any combina-
tion of letters, digits, and the characters _ ’, reserved words excluded.

Literals

Integer literals 〈Int〉 are nonempty sequences of digits.

Reserved words and symbols

The set of reserved words is the set of terminals appearing in the grammar. Those re-
served words that consist of non-letter characters are called symbols, and they are treated
in a different way from those that are similar to identifiers. The lexer follows rules fa-
miliar from languages like Haskell, C, and Java, including longest match and spacing
conventions.

The reserved words used in Rebeca are the following:
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after boolean deadline

delay else env

erlang false first

if initial insert

int knownrebecs last

list main msgsrv

now reactiveclass remove

size statevars time

trace true

The symbols used in Rebeca are the following:

; ( )

{ } ,

= < >

. else if ||
&& | ˆ

& == !=

<= >= <<

>> + −
* / %

? : ˜

! *= /=

%= += −=

Comments

Single-line comments begin with //.
Multiple-line comments are enclosed with /* and */.

The syntactic structure of Timed Rebeca

Non-terminals are enclosed between 〈 and 〉. The symbols ::= (production), | (union) and
ε (empty rule) belong to the BNF notation. All other symbols are terminals.
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〈Model〉 ::= 〈ListEnvVar〉 〈ListReactiveClass〉 〈Main〉

〈EnvVar〉 ::= env 〈TypedParameter〉 ;

〈ListEnvVar〉 ::= ε

| 〈EnvVar〉 〈ListEnvVar〉

〈ReactiveClass〉 ::= reactiveclass 〈Ident〉 ( 〈Integer〉 ) { 〈KnownRebecs〉 〈StateVars〉 〈MsgSrvInit〉 〈ListMsgSrv〉 }
| reactiveclass 〈Ident〉 ( 〈Integer〉 ) { 〈KnownRebecs〉 〈StateVars〉 〈ListMsgSrv〉 }

〈ListReactiveClass〉 ::= ε

| 〈ReactiveClass〉 〈ListReactiveClass〉

〈KnownRebecs〉 ::= ε

| knownrebecs { 〈ListTypedVarDecl〉 }

〈StateVars〉 ::= ε

| statevars { 〈ListTypedVarDecl〉 }

〈MsgSrvInit〉 ::= msgsrv initial ( 〈ListTypedParameter〉 ) { 〈ListStm〉 }

〈MsgSrv〉 ::= msgsrv 〈Ident〉 ( 〈ListTypedParameter〉 ) { 〈ListStm〉 }

〈ListMsgSrv〉 ::= ε

| 〈MsgSrv〉 〈ListMsgSrv〉
| ε

| 〈MsgSrv〉 〈ListMsgSrv〉

〈VarDecl〉 ::= 〈Ident〉

〈ListVarDecl〉 ::= ε

| 〈VarDecl〉
| 〈VarDecl〉 , 〈ListVarDecl〉

〈TypedVarDecl〉 ::= 〈TypeName〉 〈Ident〉
| 〈TypeName〉 〈Ident〉 = 〈Exp〉

〈ListTypedVarDecl〉 ::= ε

| 〈TypedVarDecl〉
| 〈TypedVarDecl〉 ; 〈ListTypedVarDecl〉

〈TypedParameter〉 ::= 〈TypeName〉 〈Ident〉

〈ListTypedParameter〉 ::= ε

| 〈TypedParameter〉
| 〈TypedParameter〉 , 〈ListTypedParameter〉

〈BasicType〉 ::= int

| time

| boolean

| list < 〈BasicType〉 >

〈TypeName〉 ::= 〈BasicType〉
| 〈Ident〉
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〈Stm〉 ::= 〈Stm〉 ;
| 〈Ident〉 〈AssignmentOp〉 〈Exp〉 ;
| 〈TypedVarDecl〉 ;
| 〈Ident〉 . 〈Ident〉 ( 〈ListExp〉 ) 〈After〉 〈Deadline〉 ;
| delay ( 〈Exp〉 ) ;
| if ( 〈Exp〉 ) 〈CompStm〉 〈ListElseifStm〉 〈ElseStm〉
| 〈Ident〉 . insert ( 〈Exp〉 )
| 〈Ident〉 . remove ( 〈Exp〉 )
| trace ( 〈Ident〉 , 〈ListExp〉 ) ;

〈ListStm〉 ::= ε

| 〈Stm〉 〈ListStm〉

〈CompStm〉 ::= 〈Stm〉
| { 〈ListStm〉 }

〈After〉 ::= ε

| after ( 〈Exp〉 )

〈Deadline〉 ::= ε

| deadline ( 〈Exp〉 )

〈ElseifStm〉 ::= else if ( 〈Exp〉 ) 〈CompStm〉

〈ListElseifStm〉 ::= ε

| 〈ElseifStm〉 〈ListElseifStm〉

〈ElseStm〉 ::= ε

| else 〈CompStm〉

〈ListIdent〉 ::= 〈Ident〉
| 〈Ident〉 . 〈ListIdent〉

〈Exp〉 ::= 〈Exp〉 || 〈Exp2〉
| 〈Exp1〉

〈Exp2〉 ::= 〈Exp2〉 && 〈Exp3〉
| 〈Exp3〉

〈Exp3〉 ::= 〈Exp3〉 | 〈Exp4〉
| 〈Exp4〉

〈Exp4〉 ::= 〈Exp4〉 ˆ 〈Exp5〉
| 〈Exp5〉

〈Exp5〉 ::= 〈Exp5〉 & 〈Exp6〉
| 〈Exp6〉

〈Exp6〉 ::= 〈Exp6〉 == 〈Exp7〉
| 〈Exp6〉 != 〈Exp7〉
| 〈Exp7〉

〈Exp7〉 ::= 〈Exp7〉 < 〈Exp8〉
| 〈Exp7〉 > 〈Exp8〉
| 〈Exp7〉 <= 〈Exp8〉
| 〈Exp7〉 >= 〈Exp8〉
| 〈Exp8〉
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〈Exp8〉 ::= 〈Exp8〉 << 〈Exp9〉
| 〈Exp8〉 >> 〈Exp9〉
| 〈Exp9〉

〈Exp9〉 ::= 〈Exp9〉 + 〈Exp10〉
| 〈Exp9〉 − 〈Exp10〉
| 〈Exp10〉

〈Exp10〉 ::= 〈Exp10〉 * 〈Exp11〉
| 〈Exp10〉 / 〈Exp11〉
| 〈Exp10〉 % 〈Exp11〉
| 〈Exp11〉

〈Exp11〉 ::= ( 〈Exp〉 )
| ? ( 〈ListExp〉 )
| ? ( 〈Exp〉 : 〈Exp〉 )
| 〈Exp12〉

〈Exp12〉 ::= 〈UnaryOperator〉 〈Exp11〉
| 〈Exp13〉

〈Exp13〉 ::= now ( )

| erlang . 〈Ident〉 ( 〈ListExp〉 )
| 〈Ident〉 . size ( )
| 〈Ident〉 . first ( )
| 〈Ident〉 . last ( )
| 〈Constant〉
| 〈Exp14〉

〈Exp14〉 ::= 〈ListIdent〉
| ( 〈Exp〉 )

〈ListExp〉 ::= ε

| 〈Exp〉
| 〈Exp〉 , 〈ListExp〉

〈Exp1〉 ::= 〈Exp2〉

〈Constant〉 ::= 〈Integer〉
| true

| false

〈ListConstant〉 ::= ε

| 〈Constant〉
| 〈Constant〉 , 〈ListConstant〉

〈UnaryOperator〉 ::= +

| −
| ˜

| !

〈AssignmentOp〉 ::= =

| *=

| /=

| %=

| +=

| −=
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〈Main〉 ::= main { 〈ListInstanceDecl〉 }

〈InstanceDecl〉 ::= 〈TypedVarDecl〉 ( 〈ListVarDecl〉 ) : ( 〈ListExp〉 )

〈ListInstanceDecl〉 ::= ε

| 〈InstanceDecl〉
| 〈InstanceDecl〉 ; 〈ListInstanceDecl〉
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