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Abstract

Cyber Physical Systems (CPS) consist of embedded computers and networks for controlling
and monitoring the physical processes associated with it. In practice, these systems are complex in
nature. Also most of the CPS systems handle concurrent and real time operations and they are
mostly distributed in architecture. Suitable analysis techniques need to be used in order to design
and develop a CPS system. Formal verification is a branch of software engineering which is used
to verify the correctness of a design. Model checking is one technique used in formal verification,
where a formal model of the real system is developed. This model is used for verify the correctness
of the system design against its specified requirements. For model checking, a formal model and
a formal specification language is required. There are several formalism available to represent
concurrent distributed systems such as Petrinets, Actor models etc. Actor models are suitable for
modeling the functional behaviour of distributed and asynchronous systems. If formal verification
support could be incorporated with an actor model, it shall be beneficial in analyzing cyber physical
systems. In this thesis, we use an actor based modelling language which is supported by formal
semantics to analyze a complex cyber physical system. This study aims to analyze the distributed
nature and concurrent behaviour of the system and not timing constraints. The system selected
for this study is a safety critical system which consists of several autonomous machines which are
operating in a fleet manner carrying out concurrent operations at a site. We also analyze the
distributed design architecture of autonomous machine individually. The design implementation of
the system is developed in a Robot Operating System and the actor based modelling language used
for developing the models is ’Reactive Objects Language’ (Rebeca). Thus major tasks of the study
include understanding the ROS based system, transformation of ROS elements to Rebeca models
and verification of system specific properties. The study outcomes include identification of few
mapping patterns between ROS and Rebeca. During this process a reusable algorithm describing
the procedure of transforming any ROS code to Rebeca model was developed. Our study results
hence proves the potential of Rebeca in verifying real robotic applications.
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1 Introduction
1.1 Thesis Motivation (Problem)
“Cyber-Physical Systems (CPS) are integration of computation with physical processes” [2]. Phys-
ical processes can be wireless sensor networks, Internet of Things etc. which requires monitoring
and control using embedded computers. Major applications of CPS include traffic control and
safety, advanced automotive systems, avionics, critical infrastructure control, distributed robotics
and so on. Most of these systems are distributed real time in nature, with integrated sensors
and actuators which can manipulate the nature of interactions. Also “Cyber-physical systems by
nature will be concurrent” [2]. Concurrent systems have timing dependency which is crucial and
any small variation of that can lead to bigger consequences. Also one failure in concurrent systems
could be contagious and spread across the system. This could lead to large-scale catastrophic fail-
ure triggered even by a small mistake. One typical example for this scenario is the ’2003 blackout
incident’ in North-Eastern United States [3]. Due to an outage of a single transmission element
of electricity generation, the parallel transmission paths become overloaded and this overloading
cascaded to a condition where electricity production and distribution for the entire city was jeop-
ardized. The source reason of outage in single transmission element can occurs due to various
unnoticed factors such as aging of equipment, mis-operation of a protective device or even envi-
ronmental factors. If proper control actions are not taken, such events can cascade easily and can
result in catastrophe. Thus, CPS system maintains a higher degree of coordination between physi-
cal and computational elements and this factor introduces safety and reliability requirements when
compared to general purpose computing. “The economic and societal potential of such systems is
vastly greater than what has been realized and major investments are being made worldwide to
develop the technology”[2].

For developing CPS, we need to select out a suitable technique to analyze the system and its end-
requirements. CPS analysis requires focus on its distributed architecture, real time constraints and
concurrent nature. However, this thesis focuses in analyzing and verifying only the distributed and
concurrent nature of CPS systems, but not on to their timing or interaction between physical and
software components. There are a wide range of analysis techniques such as testing, simulation,
assertion check, formal verification methods and model checking. It needs to be assured that the
developed system is inline with expected requirements. Anyhow the selected analysis technique
shall be able to manage the complex behaviour of CPS system using levels of abstraction. As the
complexity increases, reliability assurance requires inexorable testing. Also most of these systems
are designed to be operated over a longer period of time under several environmental conditions
and thus scope of testing becomes extremely large. Similarly simulation testing are effective at de-
tecting an error quickly and easily, but when it comes to complex systems it is not time effective.[4].
“Formal specification and verification, an alternative approach which guarantees that the require-
ments or the desired properties are satisfied for any possible execution of the system, have therefore
been active areas of research in the distributed system community for more than thirty years.”[5].

Formal verification is a field of software engineering, where correctness of a design or algorithm can
be verified against its end requirements or properties using mathematical proofs. Model Checking
is one approach in formal verification method. A formal model could help in both qualitative
and quantitative analysis of system development without considering its implementation details.
Significance of model checking is that, it verifies for system state at least once. There exists several
model checking tools such as UPPAAL, SPIN, PRISM, Java Pathfinder etc. which are based on
modelling languages such as Timed Automata, PROMELA, PEPA/Plain MC, Java and so on.
Actor based modelling is another concept for modelling concurrent systems. This too is a mathe-
matical model, where actors are basic entities of concurrently executing objects that communicate
exclusively via asynchronous messages[6]. Actor models have lesser semantic gap between formal
verification approaches and real applications. As engineers this modelling approach shall be easier
and more convenient to use. Thus, a combination of actor model and formal verification method
shall be a suitable technique to analyze a distributed concurrent CPS system. Reactive Objects
Language (Rebeca) is an actor based modelling language, which is supported by formal methods
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and tools. Rebeca models shall be translated into existing model checker languages using ’Rebeca
verifier tool’ so as to enable property verification using the models. Modular verification and ab-
straction techniques are used to reduce the state space and makes it possible to verify complicated
reactive system.” [7]

1.1.1 Project Definition (Solution)

The goal of this thesis can be defined as an analysis study of a distributed concurrent cyber physical
system, using an actor based formal modelling language. We have selected a case study of ’Electric
Site Project’ with Volvo Construction Equipment. The scope of this project includes developing
autonomous machines for material transport for an electrified quarry site. These machines are
designed to operate in a fleet manner. Currently these are machine prototypes with a carrying ca-
pacity of 15 tons and are completely battery driven. They are designed for loading, unloading and
charging in a cyclic manner. The machines are designed to operate autonomously and coordinated
by a centralized server control. These machines are termed as ’HX prototype hauler’ and they fall
under the category of CPS systems. Also they are safety critical systems, since the failure of a
system could lead to consequences that are determined to be unacceptable[8]. Similarly the site
operation, termed as ’Fleet Management Operation’ consists of several concurrent processes and in-
terdependent operations forms a CPS system. Hence the aim of this study is to analyze distributed
nature of HX prototype machines and concurrent behaviour of Fleet Management Operation using
Rebeca actor modelling language. Fig1 shows HX autonomous hauler and an overview of Fleet
Operation at Electric Site.

The design of HX machine software and fleet management prototype are developed in a robotic
framework termed as ’Robot Operating System(ROS)’. “ROS is a framework for writing robot soft-
ware. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating
complex and robust robot behavior across a wide variety of robotic platforms”[9].ROS provides all
essentials for developing robotic applications as a complete package. Thus, in order to achieve our
thesis goal, the ROS code of HX machine design has to be analyzed and it shall be transformed to
or represented as Rebeca actor models. Modelling of fleet management prototype is based on the
inputs from experts at the organization and it does not require ROS to Rebeca mapping process.
Hence a major work in this thesis is to develop a true model of the real electric site system. This
process foresees few challenges which are described as follows. Firstly developing an actor model
of a ROS based system involves reverse mapping of robotic components to actor models. Mapping
of robotic components to actor models involve potential inconsistencies which needs to be solved.

The inconsistencies are due to the differences in framework terminologies between ROS and
Rebeca. In order to solve this problem, relevant ROS components have to to be identified and
they have to be functionally transformed to corresponding Rebeca representation. Nevertheless,
it is expected that components that cannot be potentially transformed from ROS to an actor rep-
resentation have to be properly abstracted, without abstracting significant functional details. On
the other hand, attempting for a complete and direct transformation of the ROS based system to
actor model can lead to a condition where the state space generated by model execution grows ex-
ponentially, resulting in a scenario termed ’state space explosion’, which makes the model checking
process unusable. The success of model checking and verification solely depends on the quality of
the developed model, whether the model truly represents all the required functionalities and has
specified required properties to be verified. Therefore while abstracting the real system, modelling
must be done in such a way that it captures crucial features, parameters and constraints of the
real system while avoiding a state space explosion.
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Figure 1: Left figure: Volvo’s HX autonomous Hauler, Right figure: Electric Site Fleet Management
Prototype

1.2 Research Questions
In this section, we describe the questions that are aimed to be answered by the end of this study.
Considering the points presented in 1.1, three questions are defined as the research questions at
the start of the study. The questions are defined from different phases of this research, which are
listed as below.

RQ1: How can ROS code be mapped to Rebeca model automatically?

This question focuses on the process of automating ROS code transformation to Rebeca model.
Since there are foreseen challenges in this process, the aim is to develop a specific algorithm or
procedure with which this mapping could be done without much complication. The answer for
this question shows a possibility for extending this study to one further level where, ROS code for
Electric Site system can be directly mapped to Rebeca model.

RQ2: What are the challenges involved while reverse mapping a robotic system to an
actor based formal model?

One of the main challenge involved in developing a formal model of a robotic system is that the
systems are complex in architecture. They shall be various tasks of varying priorities within the
system. Thus, it is a not an easy task to combine them to a single representation. Also due to nu-
merous state transitions and computations, the developed model can result in a huge state space
while verifying it. Such inconsistencies that are encountered while reverse-mapping the robotic
source code to an an actor-based model need to be properly handled.

RQ3: What are the properties that can be derived and possibly to be verified using
Rebeca models?

The properties are usually certain requirements of the system that have to be satisfied under any
conditions. A satisfied property from model checking verification assures that the system might
also also satisfy that particular property. Thus, this question focuses to identify relevant and
obligatory requirements of the system and get it verified using Rebeca models.
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1.3 Research Methodology
This section includes the research method used for addressing the above research questions. This
section includes the research method used for addressing the above research questions. We used a
multimethodological approach introduced presented by Nunamaker et.al[10] in 1990, as a reference
for developing research method suitable for this study. He defines four main phases for this ap-
proach Theory Building, System Development, Observation and Experimentation. We
expanded each of the phase in such a way that back iterations are allowed within every phase.
Figure 2 shows step by step details of research methodology used in this thesis work.

Figure 2: Research Methodology Used

The initial step was to conduct understand the problem. This was done by conducting a
background study related to the context. It was then followed by defining research questions,
which helped to shape up the thesis. This set of process was iterated and more clarity was
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obtained in understanding the thesis. Based on the above knowledge and with the reference of
selected case study, an initial analysis was made with respect to certain include and exclude criteria.
The analysis outcomes were used for developing abstract system design and further to develop the
models. Design system requirements are specified as properties and they are verified against the
system models. Now based on the feedback and review comments from stakeholders, the system
development phase was iterated with several rounds of experimentation. This helped to fine tuning
of verification process. Lastly the models are evaluate and conclusions are derived out of it. The
results are documented in the report.

1.4 Contributions
This section presents major contributions of this thesis study, in solving the problem described in
Section 1.1. The major contributions out from this study are as listed below:

• Mapping Patterns from ROS to Rebeca
A major part of this thesis is to transform ROS code to Rebeca models and to verify system
specific properties using the developed models. This process resulted in connecting Rebeca
semantics to corresponding ROS terminologies. Thus, a list of mapping patterns between
ROS and Rebeca were derived at the end of the study.

• An algorithm for automating ROS to Rebeca Mapping Process
While deriving the mapping patterns between ROS and Rebeca, we also identified a standard
procedure to develop these mappings. We structured the procedure as an algorithm which
can be applied on any ROS code for transforming to Rebeca model.

• Identification of relevant properties and their verification
This is a stand-alone contribution for this particular case study. We identified certain system
specific properties which were identified while understanding the system design and also
found to be relevant properties while referred to other similar studies.

1.5 Report Overview
An overview of this report structure can be explained as below:

• Chapter 2 includes ’Background’ information and ’Related Works’ for the thesis. This chapter
gives a prerequisite knowledge about the topics dealt with the study and state of the art for
this title.

• Chapter 3 presents ’ROS to Rebeca Mapping Process’. This chapter includes description on
HX hauler case study, analysis of ROS code, Model development of HX system and property
evaluation. This chapter also includes a list of identified ’Mapping Patterns from ROS to
Rebeca’ and an algorithm for the automatic mapping of any ROS code to Rebeca models.

• Chapter 4 presents ’Fleet Management Operation’ prototype description and model develop-
ment. This chapter also includes model checking of properties of this prototype model and
their results.

• Chapter 5 is the final section in this report under the title ’Conclusion’ and it includes a
summary, discussion and possible future works for this thesis.

10
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2 Background and Related Works
In this section, we present an essence of background study conducted during the initial phase of
research. Since this study touches a number of areas, such as Formal verification, actor based
modelling, ROS framework etc. this section is divided into short subsection. A brief explanation
required to understand each of this topics are included under each subsection. The state-of-art of
this topic is also included at the end of this section.

2.1 Distributed Design Architecture of Autonomous Vehicles
The systems that we are dealing within this study are autonomous vehicles/machines which have
a distributed design architectures. Background studies show that, this design architectures are
used for most of the automated vehicles which are termed as ’Automated Guided vehicles(AGVs)’.
“AGVs are cyber physical systems, with autonomous interacting units equipped with sensors and
actuators to interact with their environment and to allow them to be intelligent, cooperative,
and communicative”[11]. These systems has sensors for perceiving its environment conditions and
this information is used to compute and take decisions for the action to be taken and finally
responds using actuators. They are generally used for industrial applications such as materials
handling systems, manufacturing or construction systems and so forth[12]. In most of the cases,
they shall be operating in a fleet manner where several AGVs operates together by interacting with
each other[12]. In this case, they are not 100% autonomous, there exist a central control system
which helps to coordinate between them and to supervise the entire process [12]. This refers to a
distributed architecture of AGV systems. A wireless LAN could be used in order to provide un-
interrupted communication within the AGV system’s distributed software. Also the prime focus
while designing AGV systems would be to develop a control system which enables path routing,
collision free navigation, obstacle avoidance, battery management, no deadline misses and no dead-
lock conditions [13]. Several algorithms have been developed for motion planning strategies for
these machines to cope with open environments and to reach final destination. In addition to
this reliability and safety has to be ensured while designing such systems, as any negligence can
lead to bigger consequences. David González et.al states that “Despite of some remarkable results
obtained up to now, there is still a long way to go before having fully automated vehicles on public
roads, including technical and legal unsolved challenges” [14].

In practice, software design used for any AGV design architecture is distributed in nature[15]. A
overview of general AGV control system is shown in Figure 3[12]. In this architecture, a supervisory
control is located at the server side and it schedules job priorities and assigns individual machine
tasks. Also a global route planner routes path segments for all the machines within the operating
site. Now this paths segments shall be distributed to every machines in the fleet. At machine level,
individual control system is located for each AGV. It consist of sensors which shall perceive envi-
ronmental data and helps in self localizing the machines. This helps in avoiding obstacles and local
paths shall be calculated and this information is sent to actuator controls. Each request driven
from server shall be distributed as internal processes for each machine. Therefore in AGV system
it is required to have an internal co ordination as well. This helps to track vehicles each other,
there by avoiding collisions between them and also to avoid any deadlock condition. This struc-
ture of distributed software control system is the base for any AGV with modifications as per their
application and they provides flexibility, space utilization, safety and operational cost efficiency.
Industries demands for flexible, cost effective and less maintenance demanding solutions[12]. This
can be achieved only with a distributed system, however it increases the complexity[12]. Thus, it
is a challenge to find the right balance[12].

Moving on to design algorithms, there exists several navigation strategies and routing algorithms
for AGVs. AGVs can be considered as a ’Multi Agent System’, where several agents are closely
coupled to work together[15]. “The main functionalities that an AGV transport system has to
fulfill is assigning incoming transport tasks to appropriate AGVs, routing the AGVs through the
warehouse efficiently while avoiding collisions and deadlocks, and maintaining the AGVs batteries”
[16].Thus, the major focuses in AGV system design and development are selection of right routing
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algorithms, localization techniques, obstacle avoidance strategies and ensuring a collision free navi-
gation. The navigatory tracks are usually predefined and is used for global path planning at server
end. However, based on sensory inputs and perceived environmental information, local path has
to be computed and updated frequently. Kalman Filter Localization algorithm (KFL)/ Extended
KFL algorithm or Marklov algorithm and Monte Carlo algorithms etc. are the most preferred
ones for computation of self localization in AGVs. Similarly path planning algorithms such as Di-
jkstra’s algorithm, state lattices or Adjacent matrix method are quite popular ones to this end [14].

Being said that, AGVs are still associated with challenges when it comes to real time planning
computations[14]. “The limited time for generating a new free collision trajectory with multiple
dynamic obstacles is an unsolved challenge” [14]. Even though it is less expensive to use distributed
control algorithms than a high performance computer, they are time consuming and are at a risk
of not meeting with timing constraints. Also there exists certain ambiguity in perception and con-
trol constraints. Researches has been conducted in this area to properly handle ambiguities with
perceived information and thus to develop a better real time environment knowledge[17]. One such
study is presented by Gianluca Antonini and Michel Beierlaire in 2005[17]. More recent develop-
ment involves human factor, a driver who can interact with the system through Human Machine
Interface (HMI)[18]. However it creates newer challenges such as sensor fusion uncertainties, driver
knowledge etc. for generating safety navigation.

Figure 3: A Generalized AGV architecture
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2.2 Robot Operating System
Robot Operating System (ROS) is a licensed, open source middle-ware framework for developing
robotic applications and is becoming a de facto standard in this area[19]. ROS allows service
oriented communication between the network components. It also supports hardware abstraction,
device drivers, libraries, visualizers, message-passing, package management etc. and thus aids a
developer with low level coding requirements for developing robotic systems[19]. Furthermore, end
to end software debugging is supported in ROS with the full source code of ROS being publicly
available. This acts as a complete reference for the developers and it is a community where they too
can contribute[20]. ROS framework development was started with STandford AI Robot (STAIR)
project. and later in 2007 further established at Willow Garage as open source distributed software
under Berkeley Standard Distribution License (BSD). Recently ROS infrastructure management
was taken over by Source Robotics Foundation 6 (OSRF)[20]. ROS is not a real time operating
system, but with its rich features and multilingual programming convenience made its popularity
to grow tremendously and it has integrated with numerous development platforms such as Matlab,
Ardunio, Android, Labview etc[21].

The fundamental processing units in ROS are called ’Nodes’. A node is designed to perform specific
tasks such as publishing data, acquisition of data, data computation etc[9]. Node names shall be
unique and all the nodes are registered to a ’Master node’, which keeps track of all the nodes in
the network. This helps to establish peer to peer communication among nodes and helps to find
each other. Nodes, libraries, configuration files and all other dependent element for a function
forms a ROS package[9]. All data communication occurs in form of ROS messages. Thus, a
ROS package structures the network functionalities in a ROS system. There are several ways by
which communication occurs in ROS system, majorly via Topics and Services. Topics are means
of communication by which message transfer occurs by a publish-subscribe scheme.

Communication through topics is the most basic protocol used in ROS framework[9]. Topics are
unique channels, designed for unidirectional data flow through which nodes exchange ROS mes-
sages. They have special semantics which separates the source information from its reception.
A ’Topic’ can be considered as a named channel or bus. A node which is sending out messages
publishes it to the topic. Similarly the node which receives the message has to subscribe to that
particular topic in order to access the published data[9]. One topic can be used by several nodes
to publish their data, also multiple subscribers can access the same topic as well. On the other
hand services offer communication through request-reply scheme. That means a node can offer or
serve services under a specific service name and the client node can avail the service by sending a
request. As soon as the service is available the server node shall reply to the client node.

Services is defined by a pair of messages: one for request and other for reply. Another commu-
nication form is called ROS Bags of store-retrieve scheme and it uses a remote procedure call
(RPC) protocol which runs inside ROS master[9]. This means that the functions or procedures
used by these parameter servers are accessible through normal RPC libraries. It shall be in a
shared location accessible via network. Information can be stored during run-time, and it is later
retrieved to playback. For example, sensor data or continuous key inputs can be stored when it is
processing and later to check its behaviour, it can be retrieved and analyzed. Parameter Server
in ROS can store data of various data types and it helps to manipulate required parameters for a
ROS system[9]. Figure 4 shows an overview of ROS computational level.

Despite of numerous possibilities and advantages of using ROS framework, there is no widely ac-
cepted solution to review or verify ROS operating system.However, several approaches like run time
monitoring, static analysis techniques, model checking etc. exist have been proposed to achieve
this[22].Colin Angle, co-founder and CEO of iRobot states that unless it is made stable and secure,
ROS cannot be used for critical solutions such as military, space and security[22]. In addition to
this, lack of authentication procedure for communication between master and node makes it vul-
nerable to attack just by matching environmental variables with IP address and port number of
master[23]. Similarly ROS Bags can be hacked by intercepting the Master node message and could
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be saved to bag files. Also XMLRPC communication used in ROS can be easily intervened by at-
tackers since there is no encryption scheme for it. By registering a service with same name, hackers
can intercept the control of previous service[23]. Countermeasures for all the above drawbacks are
available, however there assurance level are not officially accepted by industries.

Figure 4: An overview of ROS computation level

Nevertheless, companies like Yujin Robotics in Korea is using ROS to develop robots for their
research and academic fields[22]. Similar is the case with newer companies like Rodney Brooks,
Heartland Robotics, Yaskawa Motoman, Adept Technology etc. These initiatives shows that there
is growing trend of ROS being used in academic community as well as for Industrial robotic
applications. However, availability of a freeware alternative is an associated challenge for these
companies. Designing the robotic framework and varying response with respect to applications is
another challenge, which is equally important to solving technical problems in robotics. Despite
of those challenges, using ROS for robotic development can bring up ’software standardization’, as
it requires only a low level of coding competence. According to Helen Greiner,another founder of
iRobot, such software standardization can help researcher engineers and smaller organizations to
release their products without much re-invention of all the required technologies[22].

2.3 Formal Methods
“Formal methods are mathematical techniques, often supported by tools, for developing software
and hardware systems”[24].They can be used for analysis and verification at any part of the pro-
gram life-cycle and are often supported by tools. J.Woodcock et.al has cited that “Formal method
tools can provide automated support needed for checking completeness, traceability, verifiability,
and re usability and for supporting requirements evolution, diverse viewpoints, and inconsistency
management”[24]. “Formal methods have been recognized as a critical, and often expected, design-
time component for autonomous and life-critical systems such as aircraft and spacecraft”[25]. For-
mal methods can be categorized into Formal Specification and Formal verification[26]. Formal
Specification is used for describing or representing a system and its desired properties formally,
where as Formal verification involves analyzing the system for the specified properties. Formal
verification can be defined as a field in software engineering, which uses mathematical basics to

14



Mälardalen University Master Thesis

prove the correctness of a design by verifying against its formal specifications[27]. Since they are
supported mathematically, the results provides a confidence in the validity for design correctness.

Formal verification (FV) methods have been used for analysis and verification of complex and safety
critical systems such as air traffic control, defense etc [28]. These methods are based on discrete
mathematics and computer aided tools in order to describe and analyze properties of hardware
and software systems. During system development, a higher percentage of total effort is invested
for verification and debugging of the development process[29]. This verification process becomes
expensive and exhaustive as the complexity of the system increases. Verification can be classified
into various categories based on the techniques used. Figure 5 shows an overview of verification
methods available[30]. Simulation is a sophisticated and easy to understand technique used for
system verification. They are usually on-spot on detecting any error, however simulation process
are time consuming, it consumes a lot of resources and also it is vulnerable to human error[29].
Emulation is the process of recreating system design using a special purpose emulation system.
This is also not a cost effective solution for verifying complex systems.

The final alternative is formal verification, where issues related to design ambiguities are verified
by automated and exhaustive system space exploration. Also FV techniques can be applied even
at the early stages of development, thus it is cost effective and less time consuming. This is an
active area of research in the distributed community for more than 30 years [31]. FV approach
includes two factors: 1.) A formal specification for describing the system and its requirements 2.)
Analysis method to verify whether the system specifications meets the specified requirements. In
order to formally represent the system and its requirements, certain formalism standards has to
be used. The most popular ones to this end are Temporal Logics, Propositional Logic or
Boolean Logic, Predicate Logic and so on. Formal methods can be arithmetic verification,
property checking or equivalence checking as depicted in Figure 5. As described in Section 1.1.1,
we are focusing on Model Checking techniques for this study, hence analyzing or understanding
about other formal method techniques are out of scope for this thesis.

Figure 5: An overview of Verification Techniques

15



Mälardalen University Master Thesis

Model checking is a widely used technique for formal verification of distributed systems.It was
developed in early 1980’s by Clarke and Emerson and by Queille and Sifakis[25]. Since it is auto-
mated, verification of even complex systems can be done in lesser period time when compared to
other formal verification techniques.It works by effectively examining the complete reachable state
space of a model in order to determine whether the system satisfies its requirements or desired
properties”[31]. Thus, Model checking is a process of verifying whether the system conforms with
its specified requirements. As the properties are verified as satisfied, model checking iteration goes
on and finally a state space representing all possible state transitions of the system shall be gener-
ated. On the other hand, if the any of the property is violated, the model checking process stops
and a counter example showing the path of property violation is generated. This process is given
in Figure 6. By analyzing this counter example, we can identify which transition of the system
state resulted in the failure. Also model checking performs an exhaustive searching of all states in
a systematic way, thus an error captured during model checking is always a real error. However,
when it comes to complex systems the state space generated can be really huge. This is because
when various component states are combined, number of states grows exponentially. ie. a system
with ’m’ states and ’n’ variables, shall result in m* (2(exp)n) states. This is a risk for ’state space
explosion’ problem, which is the greatest disadvantage with any model checking method[32].

“Temporal logics are modal logics with special operators for time”. Time can either be interpreted
to be linear or branching. The most common logics are the linear time logic Linear Temporal Logic
(LTL), and the branching time logic Computation Tree Logic (CTL)[33]. Formal specification of
system requirements requires a representation language and an associated tool for verification.
Linear Temporal Logic (LTL) was introduced by Amir Pnueli in 1977, to describe the behaviour
of a system by a single formula[31]. Property specification in model checking using temporal logic
supports to specify various concurrency properties. Using Temporal Logic, system properties shall
be specified. ’Safety’ and ’Liveness’ are two main properties which shall be verified using any model
checking tools. Safety properties verify that there exists no state with undesired behaviour and
liveness properties verifies that there exists at least one state where desired behaviour eventually
exists [32]. Using temporal logic, these properties can be given as below:

If p is a property in system S, LTL formulas can be specified as below:

G(p) (1)

F (p) (2)

Equation 1 states that property p is globally true in the system. Equation 2 states that property
p is finally true in some state of the system.

Similarly, if p and q are two properties in the system, we can specify another LTL formula as below:

G(p− > Fq) (3)

Equation 3 states that whenever property p holds in the system, property q will be finally true.

There exists several model checking tools such as UPPAAL, SPIN, Java Pathfinder and so on
which emphasizes on the modeling of process synchronization and coordination, not computation
and is also not meant to be analyzed manually[30]. Various model checkers are based on various
programming languages and each of them are developed for various modelling strategies. For
example, UPPAL is a model checker tool used for modelling real time systems as networks of timed
automata with extended data types[34]. It uses finite control structure and real value clocks for
communicating through defined channels and shared variables [34].SPIN is another model checker
used for the development and verification of concurrent and distributed systems[35]. In this thesis
we use an actor model, Rebeca for modelling a distributed and concurrent AGV system. We have
included a brief description about rebeca, its background and its associated model checking tools.
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Figure 6: Model Checking Process

2.4 Rebeca
“Rebeca is an actor-based language with a formal foundation, designed in an effort to bridge the
gap between formal verification approaches and real applications”[7]. It is used for modelling con-
current applications based on an operational interpretation of the actor model. An actor model
is a programming standard for developing reliable and maintainable concurrent software. They
represents dependencies between various network ties. In actor modelling, an actor is the basic
entity who communicates with each other via messages. These messages need not be processed
immediately when received . They can be stored unless the receiver is ready to process it. Thus,
an actor can manipulate its own state, change its own behavior, send messages to other actors and
spawn more actors. In other words, actors are distributed, autonomous objects that interact via
asynchronous message passing[36]. The flexibility of abstracting complexities makes actor model
suitable for several concurrent applications. Examples of these applications include designing em-
bedded systems, wireless sensor networks, multi-core programming and designing web services[36].
Analysis of real-time systems using actor model is not in use even though actor models gained pop-
ularity in analyzing distributed and concurrent systems. Thus, a few timed actor-based modeling
languages were introduced such as RT-synchronizer and Timed Rebeca[37].

Rebeca is an actor based modelling language which is designed to enable formal verification of
actor models[36]. Rebeca provides a model-driven development approach with a formal basis. It
bridges the gap between software engineers and formal method community. Rebeca modelling
is used for those applications which involves event-driven systems with asynchronous message
passing. Rebeca allows non-blocking communication and non-preemptive function execution. It
support neither explicitly receiving messages nor shared variable mechanism. Potential of Rebeca
has been extended by researchers and it has been proposed to provide the ability of modeling
and verification of distributed systems with real-time constraints. For this a concept of Floating
Time Transition System (FTTS) which significantly reduce the state space generated when model
checking with Timed Rebeca models[37]. Using Timed Rebeca, verification for deadlock freedom
and schedulability analysis can be performed.

“Modular verification and abstraction techniques are used to reduce the state space and make
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it possible to verify complicated reactive systems”[38]. Various techniques are used in abstracting
a complex real time system, while preserving its property specification using temporal logic. This
helps in reducing the state space of model which makes it more suitable for model checking process.
Rebeca looks very similar to a high level programming language like Java even though it is a mod-
elling language with formal semantics and formal verification support. In Rebeca, communication
takes place by asynchronous message passing between Rebecs and execution of the corresponding
message servers. Each message is put in the queue of the receiver rebec and specifies a unique
method to be invoked when the message is serviced. Rebeca communications are event driven,
where the messages that are sent among actors are considered as events. Each rebec (actor) picks a
message (event) from its message queue (memory)and executes the corresponding message server(
function/tasks). This execution takes place in a non preemptive manner, that means priorities
on tasks cannot be set. Thus, communication of the model is achieved by asynchronous message
passing which is non blocking for both sender and receiver[38].

The message is placed in the message queue of corresponding rebec and it stays there until it is
served by the receiver rebec. This queue length shall be defined by the model developer based on
the model design. Timed Rebeca which is a timed extension of rebeca is a high-level actor-based
language capable of representing functionality and timing behaviors at an abstract level. The
timing constraints are specified in Rebeca using three keywords: delay, after and deadline. The
keyword ’delay’ represents the passing of time for one actor. Keyword ’after’ is used whenever
a message has to be delivered ’ after x timeunits’. The Keyword ’deadline’ indicates that if the
message is not served by receiver within specified deadline time, it shall get purged. In Figure 7,
a basic syntax and structure for a reactive class is shown.

In first line, the numeral given in brackets next to rebec name is the message queue size which
is defined by the model developer. It is defined that a pure actor model has unbounded queue
length in theory, but in implementation queue size has to be defined. Second line is the syntax for
defining the other rebecs/actors to be communicated by this rebec. Third line holds state variables
for this reactive class. It is used to represent the current state of the actor. The state variables
can be of int, byte, short, boolean types. Further this rebec shall be initialized. Various message
servers has to be defined which are the functions to be executed. Message servers can have input
parameters which can be of different types. Methods are local to the corresponding rebec and it
can be only be called by the message servers or other methods inside this rebec. A method can
return value whenever it is called and it can send a message to only the rebec containing it. This
rebec is accessible by using keyword ’self’, which is the reference to a rebec.

2.5 Rebeca Model Checker Tools
2.5.1 Rebeca Model Checker (RMC)

Rebeca language provides model checker tools which acts as the front-end to translate the codes
into existing model-checker languages. Thus, it enables to verify their properties[1]. Modere was
the first direct model checker of Rebeca which was developed in 2005. Modere performed LTL
model checking on Rebeca models[1]. Later RMC was developed for direct model checking of
Rebeca models without using back-end model checkers. With this development, properties could
be specified based on the state variables of rebecs. RMC evolved with newer versions to make it
more advanced, stable and reusable. This was achieved by decoupling model checker algorithm,
state space storage mechanism and input model translator. RMC can be considered as a compiler
which translates the input Rebeca model to a set of C++ files. These generated C++ files are
compiled to an executable file. This file execution applies the model checking algorithm and
generates the verification result. Verification result shall include the generated state space of the
model which is saved in an XML format and termed as ’statespace.xml’

2.5.2 Afra

Afra model checker was developed to integrate several modelling environments including Rebeca
and SystemC. It used reduction techniques to tackle the state explosion problem, where ever ap-
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Figure 7: A typical class definition in Rebeca[1]

plicable. System C models are the inputs to Afra along with its LTL or CTL properties and the
the model shall be verified. Like any other model checking tools, if any of the specified property is
not satisfied, a counter -example is displayed. This counter example shows a trace of system state
transition where the property was violated. In case of System C models, Afra translates SystemC
codes to Rebeca. It then utilizes the Rebeca verification tool set to verify the given properties. Afra
uses the concept of Floating Time Transition System (FTTS) for the analysis of Timed Rebeca
models[39]. FTTS can significantly reduce the state space of the model to be explored. Here the
focus is on event-based properties and but not the constraints. The current version of Afra model
checker available is ’Afra 3.0’ and this is used in this study. Afra needs Java Runtime Environ-
ment (JRE) version 1.5 or higher. Afra needs a C/C++ compiler for model‐checking tools and for
compiling SystemC sources. In windows an open‐source C/C++ compiler, the GNU C Compiler,
in Cygwin package bundle needs to be used.

2.6 Related Works
2.6.1 Formal verification on Robotic systems

Raju et al. presented a work on formal verification of a ROS based robotic application using timed
automata modelling language in [40]. In this work, they proposes an approach to model and verify
the communication between nodes in ROS system. A case study on a physical robot, Kobuki, has
been focused and its selected properties are verified using UPPAAL model checker. This work
is closely similar to our thesis even though the modelling language and application is different.
Conclusively the study conducted in [40], presents a formal representation of selected ROS based
application and selected properties verification using the model checker. Followed by formal model
development based on the case study and verification of its safety and liveness properties is con-
ducted. Their proposed model could find parameters to validate properties such as continuous
availability of sensor messages, continuous motion status etc.

Tichakorn Wongpiromsarn and Richard M. Murray presented a study on formal verification of an
autonomous vehicle system, Alice, in [41]. The case study and approach presented in this paper
is very similar to our work. The distributed nature of the system under their case study is ex-
ploited in systematic way that the entire system level requirements has been decomposed into a
set of component level requirements. This helps to model and verify without much complexity.
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State consistency between different software system modules and safety and liveness properties
have been verified in this study. Even though this study is related to our thesis in terms of using
formal verification methods to analyze an AGV system, they use a combination of model checking
and theorem proving methods whereas we are focused on actor based model checking with formal
method support.Also they uses CTL and LTL statements for property specification, whereas since
Afra supports only LTL statements, we uses LTL statements for property specification.

A formal verification approach has been presented in [42], where industrial robotic system proper-
ties has been verified using a model checker tool called ’SPIN’. However, these robots are not built
on ROS framework. The three properties which have been looked at are deadlock detection, non
collision and kill-switch violations (an emergency stop situation depending on variable value which
is checked periodically). This paper presents mapping of robotic systems into PROMELA models
and verifying them using SPIN model checker. This is similar to our work where robotic system is
mapped to Rebeca models and verified using Afra tool. However as the robotic systems cannot be
directly mapped into the modelling language used for the study, a compiler optimization technique
is used for closing the semantic gap.

Webster et al. proposed a formal verification of ROS-based autonomous robotic assistant “Care-
O-bot”[43]. This work is closely related to our thesis study for three similarities 1) ROS based
autonomous robot 2) formal verification 3) model checking. Also a non deterministic approach
is used in the model that can cover a larger set of user activities. Similar to [42], this work uses
PROMELA modelling language with SPIN model checker. This work was much specific to the
robot and it focused on verifying properties on high level decision making rules. Hence they are
proposing a proof of concept showing the assurance of their model in representing the real system
and the level up to which it is conformed to the system requirements.

In [44] model development specification and model checking of multi robotic system are presented.
The use of formal methods in safety critical applications are presented in this study. Similarly
problem scenarios which could be solved using their formal specification and verification is depicted
in this paper. The work done in this paper is not directly related to our thesis study, however
it provide an overview about formal verification procedure in robotic framework. Cowley and
Taylor proposed a static verification of robot behaviour in [45]. They proposes a static and formal
approach of safety requirements as well as a self analysis of expected states at every sequence of
actions on the system in this study. However the modelling approach used in this work is based
on finite state systems and timed automata whereas the model checker used in this thesis is based
on floating time transition system(FTTS).

2.6.2 System Analysis Using Actor Based Modelling

In [46], Khamespanah et al. presents schedulability analysis of a distributed wireless sensor and
actuator network (WSAN) using actor based model checking. They developed models to find an
optimized schedule to use resources while satisfying timing constraints. The WSAN is represented
as a collection of actors. Their abstraction and composition properties are used to build a true
model of WSAN behaviour which is extracted from node level. A comparison of this approach
with traditional informal analysis is based on assumptions and measurements, trial and error etc.
But each of these faced several practical difficulties because of the complexity of concurrent and
distributed nature of WSAN systems. With their proposed approach and solution, the authors
could assess the performance and functional behaviour of the system throughout the design and
implementation phases. Also the developed models helped to determine the parameter values,
which lead to highest system efficiency. In addition, by using the actor based modelling approach,
the size of the system state space could be reduced by 50 to 90%. This study is related to our
work as they also use a case study on a distributed concurrent system, use of Rebeca modelling
language and Afra model checker tool. However it does not involve a mapping process between a
robotic framework to actor model checking.

Brynjar Magnusson et al. presented a work in [47] on Event based Analysis of Timed Rebeca
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Models using SQL. In this work, authors presented an approach of actor based model analysis us-
ing simulation and event based property specifications. From simulator end, occurrences of events
are stored in a relational database and the model checking is performed against it. In any model,
the reactive behaviour of the system is modelled with asynchronous communication. Here each
actor can make local decision, send messages and determine how to respond to the next message.
The major outcomes from this work were implementation of a tool set to simulate the developed
TR models, development of an event based property language for TR models, a tool set to map
formal models to SQL queries and a tool for analyzing executing SQL queries results. However,
the authors have realized the necessity of finite simulation traces of TR models in order to perform
simulation based analysis. Hence every simulation has to be stopped periodically to get finite
simulation traces, whilst the optimum point to stop the simulation solely depends on the model
and its properties. This work is related to our work in such a way that offline run-time verification
has been focused as the second major contribution in our work. Also the concurrent behaviour of
the elements has been modelled using non deterministic choices. However similar to the previous
one, this work also does not involve any robotic framework modelling and its verification.

In [48], Khamespanah et al. presents modelling and analyzing of distributed and asynchronous
systems using Rebeca actor based language. They states that actor model is a well established
paradigm to model the functional behaviour of distributed and asynchronous systems. This work
presented the semantics for a formal presentation which is approachable and user friendly. Also a
reference for any implementation effort. In this study, a case study of ’Network on Chip (NoC)’
architecture has been modelled and analyzed using the above developed modelling language. They
verified desired reachability properties and no-deadline-miss property of the developed models in
this work. They also have used parallel composition approach for Rebeca models for faster model
checking. Here the approach is to map each component of the system in a ’Probabilistic Timed
Rebeca’ model to a Probabilistic Timed Automaton (PTA). This is followed by a parallel composi-
tion of all the developed PTAs. PRISM model checker is then used as model checker for the PTAs
and to verify its probabilistic properties. The experimental approaches used in this paper and its
object oriented implementation has been referred to develop models for our study.

Jafari et al. conducted a study[49] to verify safety properties of larger models using statistical model
checking. The authors provide analysis technique and its tool-set for verifying functional correct-
ness and performance evaluation of real time distributed systems using asynchronous message
passing. Multiple simulations of the system is executed and the mean value of model correctness
is computed for a specified property to be verified. For performance evaluation, the mean response
time to compute performance measures of the model is computed. This study uses several case
studies to experiment with verification of several safety properties. They could conclude that the
efficiency and applicability of statistical model checking approach depends only on the size of our
models. Thus, by increasing the number of rebecs/actors and the message passing between them,
the approach can be applied for more complicated system. This study is related to our work in
this regard. The modelling techniques has been referred from this work. The inspiration to per-
form reconfiguration analysis on the operational behaviour mentioned in our case study was also
reinforced from this work.
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3 ROS to Rebeca Mapping
In this section, we describe the entire process of ROS to Rebeca mapping using the HX machine
case study approach. The distributed nature of HX machine’s software design is analyzed and
transformed to Rebeca model in order to verify the specified properties. This process consists of
several steps which can be listed below. In this section, each of the below steps are described as
subsections.

• Knowing the HX machine architecture by understanding the ROS source code

• Developing Rebeca Models by abstracting relevant details from the ROS source code

• Identifying relevant and beneficial system properties and their verification

• Deriving mapping patterns between ROS to Rebeca

• A reusable algorithm to transform from any ROS code to Rebeca model

3.1 Understanding HX system ROS source code
Understanding a ROS source code requires prerequisite knowledge in ROS framework terminologies
and structure. Thus, getting familiar with ROS programming is the first task in understanding
ROS source code. Since ROS provides inbuilt provisions for hardware, device drivers, libraries,
visualizers, message-passing, package management etc. and with basic ROS knowledge, a code
walk through was done to understand the HX design implemented in ROS. From the high level
design diagram, as given in Figure 8, an overview of design architecture is obtained. While creating
a high level design diagram, developers have exploited the distributed architecture of HX system
in such a way that they are modularized into 1.) Server Module and 2.) Machine Module.
In Figure 8 section with gray background represents machine module and section with white back-
ground represents server module. This modularization is made only for better understanding and
representation of the design architecture.

In real system, Server Module acts as the centralized control for the fleet operation and co ordina-
tion among the vehicles and environment where as Machine Module guides the vehicle to navigate
autonomously by perceiving sensor information and reacting through actuators. ROS code ex-
ecutes the system by making the components of these modules to communicate and coordinate
with each other. An overview of design logic can be described as follows: Fleet Control located
at server coordinates the fleet of HX machines while operating. It has two mandatory inputs of
current wheel loader position and a global path planner. Fleet Control assigns machine missions
and task for individual HX machines in the fleet and track their status. On machine side, sensor
data is perceived and is used for computing an obstacle free path and it also coordinates with traffic
control component located at server side. HX machines are autonomously navigating vehicles as
well as they can be controlled by server side in case of collision possibility.

The basic processing unit of ROS framework is termed as ’Node’, thus by identifying the nodes
we figured out the total processing units in the node which are executable and communicating
with other nodes. We identified most of the components from design diagram in the ROS code
structure. however, few components were not completed implemented at the time of conducting
this study. Their functionalities were discussed with the developers for understanding the com-
plete picture of HX system design. The nodes are Fleet Control, Machine Control, Traffic
Control, Path Server, Server Obstacle Detection, Motion Control and Perception. All
these nodes are initialized and defined with variables and member functions in order to carry out
specific tasks. By going through the member functions of each of these nodes, their functionalities
can be derived. However, these functions and other member classes defined in the nodes are loaded
with implementation logic and details. We pay less attention to these data and the focus was to
look out for relevant functionalities and communication mechanism. As explained in Section2.2,
major communication mechanism used for ROS systems are via 1.) Topics and 2. Services The
major services used are MapStructure.srv, Path.srv, MachineMissionEta.srv, MachineMission.srv,
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LoadComplete.srv, FleetMission.srv and major topics used are for publishing the following mes-
sages: FleetDecisionPoint.msg, FleetStatus.msg, FleetTask.msg, FreePath.msg, machineCmd.msg,
MachineStatus.msg, MotionStatus.msg, ObstacleDetectionCmd.msg, TrafficControlCmd.msg, Mo-
tionOdom.msg and so on. This code does not uses any parameter servers for store- retrieve scheme
of communication. At the time of conducting this study, sensor node and perception node was
not functionally implemented and they were simulated in Matlab in order to verify other node’s
functionalities.

Figure 8: High Level software design architecture

Even though member functions are implementation specific, they are also covered during code
walk through process. This gave an insight of certain critical information such as stand alone be-
haviour of traffic control from server side. This component manages traffic in the fleet and this is
achieved by setting up a critical region and gateways in the path segments, which are highly prone
to collisions. These functionalities are achieved by calculating the proximate distance between
adjacent machines and estimated time of arrival for the next machine to the segment. void traffic-
Control::gatewayControl(), void trafficControl::proximityCalc(), void trafficControl::setGateways(),
bool trafficControl::calcIntersectCircleWL() are certain functions which are critical in managing
traffic on collision probable regions.
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3.2 Approach to the Model Development
Once the code walk through is completed on the ROS code, we developed an UML class diagram
which represents all the nodes in the source code. Each class included its associated variables,
its data types, member functions of the class etc. Also the class diagram included computational
and implementation details such as functions calculating position of machine with respect to x,
y, z axes etc. Nevertheless, the entire code details are not required to develop its Rebeca model.
Hence, in order to extract the relevant details we perform an analysis study with respect to certain
criteria as given below:

Include Criteria (IC):
Below are the criteria defined during ROS code analysis for including the extracted entities.

IC 1: All the active nodes from ROS source code.
Active nodes are those which shall be in executing state. These nodes has to be
sending or receiving data to establish the communication.

IC 2: All the interface connections
All the required inputs for the system as well as communication required for HX
-HX or HX-WL connections are identified.

IC 3: Nodes communicating with each other
Every node shall be communicating to an another one or more than one node. The
nodes which are communicating with each other shall be identified.

IC 4: Type of data (message)shared across the nodes (as Services or Topics)
ROS communication are of two types- via Services and via Topics. Each of these
communication mechanism are modelled differently in Rebeca. Thus these mecha-
nisms are distinctly identified.

IC 5: Functional details of member functions
Member function in ROS specifies what needs to be performed by each node. This
shall be identified to develop the functionalities in model.

Exclude Criteria (EC):
Following criteria is set so as to exclude certain extracted entities from analyzed data.

EC 1: Implementation specific or computational details
Implementation specific details such as distance or position computation or mathe-
matical calculation are not extracted from ROS code.

EC 2: Print Functions or Display messages
More specific functions such as print statements or display commands are not logical
to be an input for model development, hence they are ignored.

EC 3: Hard coded variables
Variables which are directly assigned to a value to be used for the function imple-
mentation cannot be used for model development.

EC 4: ROS specific functions ROS built in functions such as advertise() , callback queue(),
nodeHandle etc. are not extracted.

Step 1: The initial phase of the model development process is to extract relevant features
from ROS code. We represent this information using a class diagram, with all extracted data in it.
Figure 9 shows the entire process, starting with creating a CLASS DIAGRAM with all extracted
ROS code details. This unit includes all the required inputs for model development. Information
used for this phase are derived from source code and based on include and exclude criteria. This is
achieved by doing an entire code walk through and by analyzing each element against the defined
criteria. During this process we have also included required inputs for the system, since those are
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required for developing the complete model.

Step 2: The next task is to identify and map the extracted components to match with their
connections so as to establish the communication similar to that of in real system. In this thesis,
we have taken an approach to use UML design diagrams to represent the ROS code details as well
as to represent the extracted details. Thus, an UML activity diagram is developed as shown in
Figure 10. This diagram is just one level above the Rebeca model. It represents all the processes
and connections relevant to the system. The model developer can use this diagram as a complete
reference while developing his model. However, this UML diagrams are not mandatory for Rebeca
model development. But it helped to cover all the necessary details of the complex system without
missing any data.

Step 3: The third and final step is to develop the Rebeca model based on activity diagram.
However, due to the complexity we have developed two different models to represent the entire
system. The first model focused to represent the server design details and communication of server
components towards machine; whereas the second model focused to develop machine specific design
details. To represent the Rebeca model, UML use case diagram is used in this thesis report. Rebeca
models look like a coded Java program and it is a tedious job to explain line by line, hence UML
use case diagram serves the purpose of representing an abstract view of Rebeca model.

Figure 9: An overview of procedure followed for mapping process
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3.3 Model Development of HX system design architecture
In this section, we describe the process of developing Rebeca models based on the information ex-
tracted from HX machine’s source code. The developed models shall not replicate ROS framework
semantics and it shall be a pure Rebeca actor model of HX machine design architecture. The first
step is to abstract relevant information. For this purpose the approach taken in this study is to
develop an UML activity diagram representing all the nodes and their mapping/relation between
each other. This step is not mandatory, however it helped as a reference while developing Rebeca
model. Figure 10 shows representation of various nodes and their communication strategies in the
ROS code.

In this stage, the actions or functions to be performed at each node is represented in rectangular
boxes. Start state and temporary pausing of machines are represented with black circle and rounded
black circle respectively. Decision making conditions are represented with diamond notation. It
does not carry over any ROS semantics or computation details. This is the level of abstraction
that we used, so as to extract input information for developing models. As seen in the Figure 10,
there are several concurrent processes involved in this system. While verifying the model each
and every possible state of this system shall be verified once against specified requirements to
check whether they are satisfied or not. For clarity and to reduce complexity, two Rebeca models
have been developed to represent the system. They are termed as 1.) Server Model and 2.)
Machine Model, even though they are not independent models representing server and machine
behaviour respectively. They together help to identify significant properties related to server-
machine coordination. The models are developed using Core Rebeca Language, since we are not
considering timing constraints of the system. The next step is to design and develop Rebeca models
with the help of the UML representation as a reference.

Figure 10: Representation of System model

In the first model, we use seven actors to represent server-machine co ordination.This model focuses
to represent communication of ’Fleet Control’ with other server components and how it establishes
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communication with individual HX machines. Each node involved in this process are represented
as capable of independent action as an actor.This model consist of seven actors including Ma-
chine Control, Traffic Control, Fleet Control,Site Manager, Path Server, Excavator, and Wheel
Loader. Note that there are some actors (Site Managerand Excavator)which were not included in
the abstracted reference from ROS code. These components came from design diagram and they
have been included for completion of the model. Since we are not focusing on the functionality
aspect, server obstacle detection component is not included in this model. The maximum message
capacity for each actor is set to be 15. The actors needs to communicate each other are defined
as their type in main class. As seen in Figure 10, Fleet Control tries to fetch site path file from
Path Server upon starting the fleet operation. This fetching is done via wireless connection in real
system, where there is possibility of connection not being established. This condition is represented
using non-deterministic statements in Rebeca model. The sending of status commands to and from
Fleet control and other Rebecs is achieved by asynchronous message passing using ’message servers’.

Thus, communication is established via message sending between the Rebecs, however an event
shall be triggered for the actor upon receiving the message. This response for this event shall be
sorted based on the pre-defined priorities and responds accordingly. For example, on receiving
wheel loader status commands, the fleet control actor shall store this information to its internal
message buffer. Fleet control then request for site path file, which has a higher priority input
and waits for it. Depending on receiving the requested information, fleet control can continue the
execution or drop it. This way, message passing is kept as the basic means of communication in the
system, but its strategies are integrated by the actors. Moving on, the state variable transport task
models the navigation mission in machine control node. Now that the communication is estab-
lished between Path server to Fleet Control to Machine Control using message passing, we will see
how to abstract computational details of Traffic Management node from ROS code. So this node
is designed with several member functions computing safe distances between the machines while
operating, braking distance, setting of gateway distance etc. The traffic control node is handling
HX-HX interactions and smooth braking around the wheel loader. The server obstacle detection
is just handling HX-WL (personal safety) with emergency braking. Since this is a static model
representation, operating time computations are ignored here. We model the local state behaviour
of the node using state variables. Thus, we model traffic management activities such as gateway
setting, speed and brake control functions etc to be invoked upon triggering this Traffic Control
actor. Figure 11 shows a Rebeca model representation for major server related activities. The
dotted lines denotes that they are inputs for the server components and are not the part of real
server system.

In the second model, four actors ’Machine Control’, ’Machine Obstacle Detection’, ’Sensor’, ’Mo-
tion Control’)are used to represent individual machine design functionalities. Each HX machine
is an AGV, which perceives environmental information through sensors and reacts back through
actuators. This model also uses Figure 10 as reference, with a focus of different functionalities
from first model. Here machine navigation is modelled by receiving sensor inputs, updated path
file information and mission assignments from fleet control. These events are modelled by asyn-
chronous message passing among corresponding actors. Apart from machine components, message
server representing Server Obstacle Detection is included in this model which can directly control
speed and brake values of individual machines. Again this is for completion of machine activity
modelling. Further, Machine control is defined with no state variables in the actor definition, these
variables and values are passed as input parameters in the main class where actors are declared.
These parameters includes input commands (mission assignment) from fleet control, distributed
path file from path server and wheel loader position updates. Server Obstacle Detection node being
event driven, it is modelled using non deterministic expression. Commands to actuators/devices
are represented as they are sent to Motion Control actor, where we assume that motion control
component leads to corresponding actuators.

From ROS code, we observed that sensor node includes various kind of sensor information such as
Lidar data, Odometry data, IMU and GNSS data. These information together helps to measure
current position and status of the machine. However, this involves detail computational logic and
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Figure 11: Server Actor Model Representation

hence we discussed with experts to get an understanding of its significance. From their opinion,
Lidar information is prone to unavailable connectivity during operation and upon this condition,
machine navigation can become erroneous to follow predefined track. This is considered as one
property to be verified with this model. Now based on this information, while specifying sensor
properties, we represent it as ’lidar sensor data’. Perception node also involves computational de-
tails for generating obstacle free navigation path. Hence the model representing this node acts as
generating free path upon receiving sensor data, otherwise not. Another attribute about HX ma-
chine is that machinecontrol always possess a correct knowledge of wheel loader’s current position,
since these are mobile elements in the operating site.

Figure 12: Actor model for Machine Level Model
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3.4 Evaluation of Properties and their Results
In this section, we will specify HX system design specific properties and their evaluation using the
developed models. As explained in 3.3, two models are developed for clarity and less complexity.
It also helped to identify relevant properties of the system. Selected properties from Server model
are discussed first, followed by its evaluation results. After which properties from Machine model
shall be described along with its evaluation result.

3.4.1 Properties of Server Model

For a given model and its specified property, model checking is based on an extensive exploration
of the reachable state space of the system and by verifying whether there exists a state where the
specified property is satisfied or not[31]. Here the selection of properties are based on the binding
parameters for the system operation with the focus on Liveness and Safety related specifications.
’Liveness’ is one significant property to be verified in distributed systems. Satisfied liveness prop-
erties of the system ensures the operational progresses while concurrent system components have
critical sections. Similarly ’Safety’ should be verified for any safety critical systems. A safety
property ensures that nothing bad happens in the system. For example, a permanent STOP or
deadlock situation/ no outgoing transitions or erroneous behaviour etc. are included in safety
properties. In Rebeca model, all the properties are specified using LTL statements. Thus, the
specified properties for server model are as below:

A. Control commands from ’Machine Control’ node leads to triggering of ’Traffic
Control’ functions

From the design it was extracted that traffic control node do not depend on any components lo-
cated at server but only on Individual machine’s status commands. I.e traffic control node has a
dependency on machine control commands for the activation of traffic management function. The
traffic management function’s response can trigger either speed and brake signal or gateway control
signal. Gateway control is required by traffic management when machine moves through critical
section of the fleet segment. Similarly speed and brake values are needed by traffic management
during a ’navigation’ event occurrence other than machine is in paused or queued state. However,
those details are abstracted and we verify only the functionality. This property can be specified
using LTL formulae as below:

G [ ( machinecontrol . transporttask)−−>
F(( t r a f f i c c o n t r o l . speedandbrakecontrol ) | | ( t r a f f i c c o n t r o l . gatewaycontrol ) ) ]

In Afra, in order to specify LTL statements, the variables used in the model have to be first defined.
m1, m2, m3, m4 are statements to define the associated variables used in the model for specifying
the above property. After this, we specify safety properties as LTL expressions.

m1= machinecontrol . transporttask ;
m2= t r a f f i c c o n t r o l . speedandbrakecontrol ;
m3= t r a f f i c c o n t r o l . gatewaycontrol ;
m4= m2 | | m3;

Property 1 : G [m1 −> F (m4) ]

This property 1 verifies that whenever transport task variable is true, it leads to a state where
variable speedandbrakecontrol and gatewaycontrol are true and this condition holds globally in the
model. In other words always when the transporttask commands are sent, finally either speedand-
brakecontrol signal or gatewaycontrol signal is enabled.

B. At any point, ’Machine Control’ node has a true knowledge of current position
of ’wheel loader’
It is a requirement from the design and from the experts that current position of wheel loader
must be known to the machine. This is ensured for error free execution of machine tasks. From
the ROS code, we learned that it is via the distributed path segments generated by ’pathserver’
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node, machine control obtains updated wheel loader position. However, we verify this property of
concurrent operation. It can be specified using LTL formulae as below:

G[ ( wheelloader . setwheel loaderStatus)−−> F( machinecontrol . transporttask ) ]

In Afra, we first define the variables used in the model using expressions m5 and m6. Property 2
specifies that whenever wheel loader status is set to be true, it finally leads transport task variable
to be true. In other words, always when the wheel loader position is set, finally the machine
perform its transport task.

m5= wheelloader . setwheel loaderStatus ;
m6= machinecontrol . transporttask ;

Property 2 : G [m5 −> F (m6) ]

C. Fleet control node requires three mandatory inputs in order to perform error
free fleet coordination

Once site manager enables fleet operation, the fleet control requires three inputs for starting the
process. This includes site path file ( which contains path information about the entire site),
wheel loader status( to know the current status of wheel loader) and Excavator status (to know
the status of excavator status). These are incoming inputs to server from components outside the
server, these inputs are significant as it assures a level of safety in operation. Property specifying
this requirement can be represented using LTL formulae as below:
G[ ( wheelloader . setwlstatus)&&(excavator . setexstatus)&&( f l e e t c o n t r o l . s i t e p a t h f i l e ) ]
−−> F( f l e e t c o n t r o l . ass ignmiss ion )

In Afra, we define the variables used in the model for specifying this property. Statements m9 to
m13 defines it and Property 3 verifies that fleet control cannot perform error free fleet coordination,
if any of the required inputs are not available.In other words, whenever ‘setwlstatus’ from wheel
loader, ‘setexstatus’ from excavator and ‘sitepathfile´ from fleetcontrol are true, finally ‘assign
mission’ of fleetcontrol shall becomes true.

m9= ( wheelloader . setwlstatus ) ;
m10= ( excavator . setexstatus ) ;
m11= ( f l e e t c o n t r o l . s i t e p a t h f i l e ) ;
m12= ( f l e e t c o n t r o l . ass ignmiss ion ) ;
m13= m9 && m10&& m11;

Property 3 : G [m13 −> F (m 12) ]

3.4.2 Verification Results of Server Model Properties

In this section, we present the results of verified properties of Server model. All the properties are
verified using Afra3.0 model checker. We found that the specified properties are all satisfied. In
this section, screen shots of verification result for each property are included.

Property 1 verifies whether machine control commands leads to the activation of traffic management
functions. Traffic management function activation is represented by a boolean variable ’transport
task’. The verification result shows that this property holds for server model. The verification
result for property 1 ensures that whenever machine control sent its control commands, it invokes
the activation of traffic management functions in traffic control node. Further verification result
shows that the traffic control component response can trigger either speed and brake signal or
gateway control signal.
Property 2 verifies that machine control has a correct knowledge of active wheel loader’s current
status at any given point of time. This property is significant because if machine control is not aware
of wheel loader current status, it may result in performing error in assigned task. This property
ensures following sequence of actions. The wheel loader’s current position shall be updated with
path server. The path server then sends distributed path file to machine control which contains
latest status of all resources including wheel loaders. Here two conditions are verified. 1) Condition
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Figure 13: Verification Result of Property 1

“wheelloaderstatus=true” eventually leads to “taskexecution” in machine control. 2) Condition
“wheelloaderstatus=false”, which means status is not known, eventually leads to a state where
“task execution” in machine control is not active. On model checking, we got both these conditions
satisfied. The screen shot for analysis result is as given in Figure 14. The result report consists
of total number of states verified, number of state transitions, total time taken to complete the
verification process in seconds and so on.

Figure 14: Verification Result of Property 2

Property 3 verifies that three mandatory inputs are required for fleet control to start assigning
mission to individual machines. This property is significant as it impacts the general fleet oper-
ation activity. The binding inputs are wheelloaderstatus, excavator status and the sitepath file.
Thus, we verify that absence of one of these inputs can lead to a state, where mission assignment
by fleet control pauses temporarily. Similarly we also verify the ability of fleetcontrol to assign
machine mission when all the three inputs are available. This property was verified as satisfied
and screenshot of the analysis result is given in fig15.
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Figure 15: Verification Result of Property 3

3.4.3 Discussion on Server Properties

A satisfied property result from model checker refers that the verified property may also be true
in the real system. However, to make sure that our model has represented an abstracted version
of real system, we injected faults into the model and verified the properties again. In other words,
if model is not representing the true system, then the properties can fail. When properties are
failed, model checker generates a counter example to show the trace of execution which caused the
violation of properties.

With respect to server model, the property 1 verified that control commands from machinecontrol
node leads to activation of traffic management functions in trafficcontrol node. control com-
mands from machine control node was represented using a boolean variable ’transporttask’ and
traffic management functions in trafficcontrol node was represented using two boolean variables
’speedandbrakecontrol’ and ’gatewaycontrol’. So whenever transporttask is set to true, it leads to
the state where either speedandbrakecontrol=true or gatewaycontrol=true. In order to inject a
fault to violate this property, we changed the value of speedandbrakecontrol variable inside the
message server which represents traffic management function. The faulty model thus represent
that whenever traffic management message server is called, speedandbrakecontrol shall be set de-
activated (false). Now this model was verified against property 1, and the result was verification
failed with a generated counter example. The result console is as shown in Figure 16.

Figure 16: Verification Result of Property 1 against fault Injection model
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Further the model was modified with a fault to verify the property, that a status update from
wheel loader shall finally reaches to machinecontrol node. To do this, the variable representing
wheelloader status update in machine control node was not set to true, whenever wheel loader sent
its update. The faulty model represent a system in which machine control node has no knowledge
about the current wheel loader position. This model was verified against property 2 and it model
checking result shows a failed property check with counter example. The result obtained from Afra
is shown in Figure 17.

Figure 17: Verification Result of Property 2 against fault Injection model

To verify property 3 against a fault injected model, the model was slightly modified from real
system representation. Property3 states that fleet control operation requires three inputs -from
site manager, wheel loader and from site path file. We made sitepath file unavailable at the class
definition of fleet control in Rebeca model, in which case variable ’vehiclepaus’ shall be set to
true. Instead we hard coded vehiclepaus variable to true and verified the model. The faulty model
represents that even if sitepath file is unavailable, vehicle shall not get paused. This model was
verified against property 3 and the result generated a counter example. Result screen is shown in
Figure 18. The number of state transitions verified for this model checking process is 51 and a
total of 32 states were verified for this process.

Figure 18: Verification Result of Property 3 against fault Injection model
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3.4.4 Properties of Machine Model

Coming to machine model, we have identified requirements related to individual machine oper-
ation. As mentioned in the Section 3.4.1, liveness property refers that “something good will
eventually happens” and safety property refers where “something bad will never happen”. Below
are the selected properties to be verified in machine level model. These properties were identified
based on inspiration from a work done by Tichakorn Wongpiromsarn and Richard M. Murray [31].

A. Non-availablity of sitepathfile to ’machinecontrol’ node leads to a ’machine
paused’ state

Machine Control requires three binding inputs to perform its operation, the first one being site path
file which includes the distributed path information from ’pathserver’ node. Machine navigation
takes a temporary pause if it does not receive sitepathfile input in order to avoid any undesired
events. It could be due to lost connectivity with path server node. The operation shall be resumed
on receiving this file input. This property can be expressed using LTL statement as below:

G[ ( ! machinecontrol . s i t e p a t h f i l e ) −−> F ( motioncontrol . vehic lepause ) ]

In Afra, the variables are defined first in order to specify the above property. Property 4 verifies
that the condition variable sitepathfile is not true finally leads to a state where vehiclepause=true
and this condition is globally true in the model.

m14= ! machinecontrol . s i t e p a t h f i l e ;
m15= motioncontrol . vehic lepause ;

Property 4 : G[m14 −> F(m15) ]

B. Application of Server emergency brake signal leads to stopping of vehicle move-
ment

Server obstacle detection is a server component which helps in HX-wheel loader coordination
actions. In machine model we have included this component as a message server. This is because
the main function of this block is to control the machine movement when detected with an active
wheel loader in the close proximity of machine, thereby preventing a collision scenario. It can be
put into LTL statement as below:

G [ ( machinecontrol . serveremergencybrake ) −−> F( motioncontrol . veh ic lestop ) ]

In Afra, the variables serveremergencybrake and vehiclestop are defined as below and the Property
5 verifies that whenever the variable serveremergencybrake is true in the model, it finally leads to
a state where variable vehiclestop is true.

m16= machinecontrol . serveremergencybrake ;
m17= motioncontrol . veh ic lestop ;

Property 5 : G[m16 −> F(m17) ]

C. Non- Availability of Sensor data can lead to temporary vehicle pausing state.

Similar to property 1, this property is specified to ensure the availability of sensor data inputs to
the machinecontrol node. Now sensor node consists of a combination of several sensor devices such
as Lidar, Odometry, IMU etc. From expert knowledge, lidar data is most prone to non available
during operation. Hence we focused only on assuring lidar data availability as their input which
is vital in computing machine position. This is because lidar sensor measures target distance by
sending a pulsed laser light to target and measures the reflected pulses to get the distance value.

LTL statement specifying this property is :

G[ ( ! sensor . sendl idardata ) −−> F( motioncontrol . veh ic lestop ) ] ;
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In Afra, the variables sendlidardata and vehiclestop are defined first. Property 6 verifies that when-
ever lidar sensor data is unavailable in the model (which is denoted as the variable sendlidardata
is false), it finally leads to a state where variable machinestop in motioncontrol node is set to true.

m18 = ! sensor . sendl idardata ;
m19 = motioncontrol . veh ic lestop ;

Property 6 : G[m18 −> F (m19) ]

3.4.5 Verification Results of Machine Level Properties

Property 4 verifies that non availability of sitepathfile leads to a temporary vehicle paused state.
Based on the model, the specified LTL property verifies that a condition in which variable sitepath-
file when set to false finally leads to another state where variable vehiclepause = true. This property
shall hold for the model in all execution trace. The screen shot of analysis result is as shown in
Figure 19. A total number of 7 state transitions were verified for verifying this property.

Figure 19: Verification Result of Property 4

Property 5 verifies that whenever a braking command is published from server obstacle detection,
machine is immediately stopped until the braking command is released. This is to ensure HX-
wheel loader collision avoidance. Based on the model, the specified LTL property verifies that
a condition in which variable serveremergencybrake = true always leads to vehicle stop conditon
represented by the variable state vehcilestop=true. The screen shot of analysis result is as shown
in Figure 20.
Property 6 verifies another safety condition where non availability of sensor data leads to a tem-
porary machine stopped state. Based on the model, the specified LTL property verifies that a
condition in which variable sendlidardata when set to false finally leads to another state where
variable vehiclestop = true. This property shall hold for the model in all execution trace. The
screen shot of analysis result is as shown in Figure 21.
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Figure 20: Verification Result of Property 5

Figure 21: Verification Result of Property 6

3.4.6 Discussion on Machine Properties

Similar to the validity check done for server model, we also verified machine model by injecting a
fault in the Rebeca code and then verified it against specified properties. Thus, a faulty model can
result in failure of properties which did satisfied for the correct model. The result of a property
check gives whether the property was satisfied or not, in second case a counter example is shown.

Property 4 verified that non availability of sitepathfile to machine control leads to a condition in
motion control node where vehicle is set to pause state. The fault injection was made such that
the variable representing vehicle pausing was set to false when sitepathfile is non available. This
faulty model when verified against property 4 resulted in failed result with a counter example. The
screenshot for failed verification result of property4 is shown in Figure 22.
Property 5 verifies that personal safety with machine-wheel loader interaction. This property
verifies that if server emergency brake is applied, it is of high priority and vehicle to which this
brake signal was sent shall be stopped immediately. In model, server emergency brake signal is
modelled using non- deterministic expression and in faulty model, the variable representing vehicle
stop is set to false when ever emergency brake signal is set to true. Verification result for this
faulty model against property 5 gives a failure result with counter example trace. The screen shot
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Figure 22: Verification Result of Property 4 against fault Injection model

of analysis result is as shown in Figure 23.

Figure 23: Verification Result of Property 5 against fault Injection model

Property 6 is similar to property 4; instead of site path file, we verify that if sensorlidardata is
unavailable vehicle shall be paused until it is available. Similar to other fault injections, here also
we hard coded the value of vehiclepause variable to false. Thus, the model represents that even if
sensor data is not available, vehicle shall not be paused. Property 6 result shows failed property
check with a generated counter example. The result obtained from Afra is shown in Figure 24.
As it can be seen from every verification result report, the number of transitions and number of
reached states are huge during model checking process. This number is the maximum possible states
and their transition which the system can undergo during execution. It is clear that verification
of a system requirement on such a complex system using functional testing can be a tedious and
time consuming job. This is the significance of model checking technique.
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Figure 24: Verification Result of Property 6 against fault Injection model

3.5 Pattern Mapping from ROS to Rebeca
In this section, we present the patterns identified when a ROS based system is mapped to Rebeca
model. This also includes certain patterns which were identified as not possible to be mapped.
Following subsections describe each of these patterns with the titles representing ROS terminolo-
gies. A table representing ROS-Rebeca mapping pattern list is also included at the end of this
section. The identified patterns are general to any ROS code and is not specific to the ROS code
of case study considered for this work. The case study specific ROS code is not included due to
confidentiality reasons.

3.5.1 ROS Nodes

Node is a basic processing unit in ROS that performs simple to complex computation. Various
nodes communicate with each other using different communication schemes. A robotic system
shall consist of several number of nodes. For example in an autonomous guided vehicle each node
performs different functionalities like path planning, obstacle detection, fleet management, traffic
control etc. In other words, main communication in ROS is achieved by message passing across
nodes.

A ROS node can be mapped to an ’actor’ or ’Rebec’ in Rebeca model. Similar to a node in
ROS, actors are the basic processing units in an actor model. By representing communication and
co ordination across the actors, system computation can be modelled in Rebeca. However, the
computation logic and details shall be properly abstracted and model development is based on
the response of an actor for its received input. Message passing between ROS nodes corresponds
to message sending between actors in Rebeca. Similarly computation or event triggering in ROS
corresponds to response behaviour or control flow representation in Rebeca.

Figure 25 shows mapping of a ROS node “talker” which performs simple sending of messages to
its Actor Model. Here “Talker” is the Node name and it sends messages at a rate of 10 to another
node. In Rebeca, action and reaction of sending and receiving of messages are modelled. The code
snippet is taken from the licensed official internet page of Open Source Robotics Foundation[50]

3.5.2 ROS Message Passing

As mentioned in Section 3.5.1, nodes communicate by passing messages to each other. This means
when a ROS node is created and initialized, it is capable of sending data to its intended recipients.
The node which shall receive this data has to be separately created and initialized. One node can
send messages to multiple nodes based on the requirement. However, in Rebeca there is a neces-
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Figure 25: Mapping of ROS Node to Rebeca Actor

sity of knowing the recipient node(s) beforehand and they has to be declared as ’Knownrebecs’.
Thus, ’message passing’ pattern in ROS can be mapped to a combined action of ’knownrebecs’
and ’message servers’in Rebeca.

As seen in Figure 26, message passing in a ROS node is done as a callback function ’chattercallback’
that shall be called whenever a message is received at the node. A pointer ’msg’ is passed which
indicates that the arrived message could be stored if required. In Rebeca, the receiving message
is stored in the queue. When the message is extracted for execution, its corresponding message
server is executed. This is achieved by defining knownrebecs for sending and receiving actors and
message sending is modelled with the help of message servers defined in rebecs and send between
known rebecs. In Figure 26 line 8 in block A defines the publisher function “chatter_pub”, with
topic name as ‘chatter’. Line 11 in block B defines the subscriber function “sub” which invokes a
call back function. The call back function is defined in line 3 of block B. Here messages from node
talker(block A) is send to node receiver(block B) through topic chatter. In block C, the rebeca
model corresponding to this pattern is represented. Line 3 models the subscriber and topic as
“knownrebecs” to the talker node. Line 9 defines the functions of talker node as message server.
Line 15 models the functions of topic. Line 23 models the actual message sending using message
servers. Line 27 models the subscriber node as Listener rebec. This rebec is defined with talker
and topic as its knownrebecs and finally line 34 models that messages are received at subscriber
rebec.

3.5.3 ROS Variables

We use variables in ROS, both local and shared ones, like any other programming language. Local
variables are those which are defined to be inside one class. They cannot be accessed from outside
the class, whereas shared variables are those which are defined outside any particular class such
that they can be accessed from across any class or function of the program. Similar to this, we
tried to identify patterns in Rebeca. Local variables could be mapped to Rebeca state variables.
They denote the current state of that actor. However, Rebeca does not have a concept of shared
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Figure 26: Mapping of ROS Message Passing to Rebeca KnownRebecs & Message Servers

variables. A variable can only be used within a reactiveclass and cannot be shared

Mapping of ROS local variable pattern is shown in Figure 27. Here count is a local variable in
ROS node ’talker’, it has been initialized after defining the node. In rebeca, all the local variables
to be used in a class shall be defined within the ’statevars’ section.

3.5.4 ROS Distributed Parameter System

Another mapping pattern which was derived from ROS framework to Rebeca model is ’ROS
distributed parameter system ’. Configuration information could be shared in ROS using global
key values. In other words tasks could be easily modified using parameter system. We consider an
example for this from ROS tutorials[50]. We define certain parameters as below :

camera/ l e f t /name : leftcamera
/camera/ l e f t /exposure : 1
/camera/ r ight /name : rightcamera

Thus, the parameter ’/camera/left/name’ can get the value of ’leftcamera’ whereever defined. It
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Figure 27: Mapping of ROS local variables to Rebeca statevariables

can also act as an dictionary, however we will not sneak into details of that. A mapping pattern
similar to the above ROS terminology would be ’environment variables’ in Rebeca. But we cannot
achieve the same result of using a parameter system in ROS. This is because ROS uses XMLRPC
data types for parameter values, which includes integers, boolean, doubles, strings etc. Meanwhile
in Rebeca string data types cannot be defined. Figure 28 shows mapping of a ROS code to Rebeca
model in which definition of an environment variable “rate” are shown.

In Figure 28 ’env byte rate=10’ is the syntax for declaring an environmental variable. The variable
’rate’ could be mapped to a ROS parameter which carries the same value whereever defined in the
Rebeca model.

3.5.5 ROS member Functions

A member function defined in ROS class can access all the objects of that class and also all the
members of a class for that object. Computations as well as other functional manipulations shall
be performed using the member functions. In Rebeca, we abstract these computational and ma-
nipulation details and modelthe functionality of nodes.

In Figure 29, pattern mapped from ROS to Rebeca is shown. ’Advertise’ is a member function
which shall publish string messages. In Rebeca, we model this as a message server as highlighted
in the figure. Most of the member functions can be modelled using boolean statements, which can
be either true or false values. These statements shall be defined in corresponding message servers.

3.5.6 ROS shared Variables

In ROS, Shared Variables carry value within a class or they can be accessed from outside a class.
However, this pattern was not directly found in Rebeca language. In Rebeca, a variable can be
only local to a class and they shall not be accessed outside of it. A Rebeca model can bypass usage
of shared variables by its design. This is because modelling technique is different in Rebeca even
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Figure 28: Mapping of ROS parameter system to Rebeca Environmental Variable

Figure 29: Mapping of ROS member function to Rebeca message server

though a major part of communication in ROS and Rebeca is via asynchronous message passing.
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3.5.7 ROS Bags

A ROS bag is a format to store ROS messages. These messages are stored and later it can be
processed, analyzed and visualized. Thus, they serve as a template of storing-playback scheme.
However, such a pattern could not be traced in Rebeca. A possible reason for this can be rebeca
models focus at model checking and verification, whereas ROS allows ROS bags feature which are
useful to perform diagnostics and visualization.

3.5.8 ROS Display functions

Another ROS pattern which is not possible to be mapped to Rebeca are Display functions, which
are for printing out messages. These functions are similar to Cout /Cin functions used in C++.
Since displaying a message is not in the scope of a model, this kind of patterns are not possible to
be modelled in Rebeca.

3.5.9 ROS Services

In ROS, the services are communication scheme which are of the request-response scheme, which
are often required in a distributed system. This means that a ROS node can request for a service
from another ROS node. The node requesting the service is called ’client node’ and the node
serving the service is called ’server node’.The services usually have an unique name and they are
defined using a pair of messages- ’request’ and ’response’. The server node offers a service and
client node requests for this service by sending a request and waits until it receives. In system,
this waiting time denotes that a process is getting blocked until its request is served. Thus, in
ROS service communication is synchronous in nature. This means that, in Rebeca if the service
is not available immediately, the next process shall be executed and there is no blocking for the
initial task. Hence, in Rebeca task execution occurs via non-preemptive manner. While mapping
to Rebeca, the challenge was to model this synchronous communication of ROS services since
Rebeca communication are through asynchronous message passing. With this study, we realized
that ROS services cannot be directly be mapped to Rebeca semantics. However, it can be mapped
via Rebeca modelling logic. This means that we define a flag (variable), which can take values of
boolean ’true’ or ’false’. Untill the service is available for the client node, the flag status shall be
set as false and with flag status being false, next process is not allowed to be executed. Thus, in
effect the initial process which requested for service is getting blocked until it gets the response.

In the Listing 1, Node “add_two_ints_Server” is the server node and “add_two_ints_client” is
the client node. This particular server node serves with adding two integers and sending it to
the client node. Once the sum is received, the value is incremented once. In ROS, this node
implementation can be explained as follows. The first four lines of the code includes the header
files which are included from .srv file. Header file contains code layout, pieces of procedural code
and forward declarations. This step is required in ROS since header file contains code layout,
pieces of procedural code and forward declarations. Line number 3 and 4 defines a function ’add’,
whose input is a request and response type is defined in .srv file. The response type in this case is
boolean. Further, line number 7 stores the sum of two integers a and b, which have been requested
to be added and the added value is stored as response. Line number 8 and 9 are for displaying
the request and response messages respectively. The next step is to initialize the service node,
line number 13 is the syntax for the same. Initialization step includes declaring the node name,
creation of node handle and creating service and advertise it over ROS (line number 18).

1 #include ‘ ‘ ros / ros . h”
2 #include ‘ ‘ beginner_tutoria ls /AddTwoInts . h”
3 bool add( beginner_tutoria ls : : AddTwoInts : : Request &req ,
4 beginner_tutoria ls : : AddTwoInts : : Response &res )
5
6 {
7 res . sum = req . a + req . b ;
8 ROS_INFO( ‘ ‘ request : x=\%ld , y=\%ld ” , ( long int ) req . a , ( long int ) req . b ) ;
9 ROS_INFO( ‘ ‘ sending back response : [\%ld ] ” , ( long int ) res . sum) ;

10 return true ;
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11 }
12
13 int main( int argc , char ∗∗argv )
14 {
15 ros : : i n i t ( argc , argv , ‘ ‘ add_two_ints_server” ) ;
16 ros : : NodeHandle n ;
17 ros : : ServiceServer se rv i c e = n . advert i seServ ice ( ‘ ‘ add_two_ints” , add ) ;
18 ROS_INFO( ‘ ‘ Ready to add two int s . ” ) ;
19 ros : : spin ( ) ;
20 return 0 ;
21 }

Listing 1: A example for Service Server

The client node requests for the service of sending the ’sum of integers’, ROS implementation for
client node shown in Listing 2 can be explained as follows. Line number 1 to 3 is statements for
including header files. This is followed by main function where the client node is initialized (line
number 6), a validity check statement(line number 7) and a display statement(line number 9). A
node handle is created in line number 12 and a client is created for the add_two_ints service(line
number 13). The ros::ServiceClient object is used to call the service when required. In line number
14, 15, and 16 an auto generated service class is instantiated and assign values into its request
member. A service class contains two members, request and response. It also contains two class
definitions which are request and response. The line number 17 calls the service. Since service
calls are blocking in nature, it shall be served once the call is done. If the service call succeeded,
call() will return true and the value in srv.response will be valid. If the call did not succeed, call()
will return false and the value in srv.response will be invalid. Once the client node received the
service, line number 26 executes, that is to increment sum value once. Line 27 is blocked until this
node receives the service ’sum’.

1 #include ‘ ‘ ros / ros . h”
2 #include ‘ ‘ beginner_tutoria ls /AddTwoInts . h”
3 #include <cstd l ib>
4 int main( int argc , char ∗∗argv )
5 {
6 ros : : i n i t ( argc , argv , ‘ ‘ add_two_ints_client” ) ;
7 i f ( argc != 3)
8 {
9 ROS_INFO( ‘ ‘ usage : add_two_ints_client X Y” ) ;

10 return 1 ;
11 }
12 ros : : NodeHandle n ;
13 ros : : Serv iceCl ient c l i e n t =

n . serv iceCl ient<beginner_tutoria ls : : AddTwoInts>( ‘ ‘add_two_ints” ) ;
14 beginner_tutoria ls : : AddTwoInts srv ;
15 srv . request . a = a t o l l ( argv [ 1 ] ) ;
16 srv . request . b = a t o l l ( argv [ 2 ] ) ;
17 i f ( c l i e n t . c a l l ( srv ))
18 {
19 ROS_INFO( ‘ ‘Sum: \%ld ” , ( long int ) srv . response . sum) ;
20 }
21 e l s e
22 {
23 ROS_ERROR( ‘ ‘ Failed to c a l l s e rv i c e add_two_ints” ) ;
24 return 1 ;
25 }
26 sum =sum ++;
27 return 0 ;
28 }

Listing 2: A example for Client Server

In Listing 3, Rebeca model for service communication represented. Here, from the initialization
part of ROS code, we derive node names for service server node and client server node and map
them as actors. These two actors communicates each other to model the request - response com-
munication process. Thus, client server shall be the known rebec for service server and vice versa.
add_two_ints_client and add_two_ints_server are the client and server nodes respec-
tively.Library functions and display functions used in ROS code are abstracted in Rebeca model.
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Model represents the information that a service request has been sent from client node to server
node. The service request is modelled using message servers in Rebeca, and serving of service
is also modelled using message servers with value of sum send as input parameter from service
message server (msgsrv add()) to client message server (msgsrv increment()). However, in
Rebeca message sending cannot be blocked. This means that if there is a delay in serving the client
node, the process will not wait until the service event occurs. It will immediately execute the next
process. Hence, to model the synchronous communication of ROS services, we have derived a
logic for modelling ROS services. When the service is not available, the client server shall send
messages to itself to the point until when the service is available. Thus blocking nature of services
is modelled without doing anything except checking the availability of service. The while loop (line
21) represents various tasks in the client server. The execution of ‘while loop’ is allowed only until
the service is available. In Rebeca model, significant functionalities of the real system is modelled
and other details are abstracted.

1 r e a c t i v e c l a s s add_two_ints_client (10){
2 knownrebecs
3 {add_two_ints_server addserver ;}
4 statevars {
5 boolean isBlocking ;}
6 add_two_ints_client ( )
7 { isBlocking = true ;
8 s e l f . checkServ iceAvai lab i l i ty ( ) ; }
9 msgsrv checkServ iceAvai lab i l i ty (){
10 addserver . i sServ iceAva i lab le ( ) ;
11 }
12 msgsrv se rv i ce I sAva i lab l e ()
13 {
14 isBlocking = f a l s e ;
15 s e l f . addService ( ) ;
16 }
17 msgsrv serviceIsNotAvai lable (){
18 checkServ iceAvai lab i l i ty ( ) ;
19 }
20 msgsrv addService ( )
21 {while ( isBlocking ){ }
22 addserver . add ( ) ; }
23 msgsrv increment ( )
24 {while ( isBlocking ){}
25 sum =sum++;

}}
26 r e a c t i v e c l a s s add_two_ints_server (10) {
27 knownrebecs {
28 add_two_ints_client addcl ient ;}
29 statevars {
30 int a ;
31 int b ;
32 int sum ;}
33 add_two_ints_server ( )
34 { a=0;
35 b=0;
36 sum=0;

}
37 msgsrv add ( ) {
38 sum =a+b ;
39 addserver . increment (sum ) ;}
40 msgsrv i sServ iceAva i lab le (){
41 addcl ient . s e rv i ce I sAva i lab l e ( ) ; }}
42 main {
43 add_two_ints_server addserver ( addcl ient ) : ( ) ;
44 add_two_ints_client addcl ient ( addserver ) : ( ) ;
}

Listing 3: Rebeca model for ROS service communication

Thus, a ROS service can be mapped to Rebeca model as a derived pattern with following steps.
Identifying the nodes participating in the communication, the service functions performed by nodes,
modelling of blocking tasks in ROS using boolean variables in Rebeca. Fig30 shows the mapping
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Figure 30: Pattern Mapping for ROS Service Mechanism

pattern representation for ROS Service to Rebeca Service mechanism.
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3.5.10 ROS Topics

ROS Topics are communication channels through which messages are send from one node to another
via publish- subscriber format. A topic act as a bus through which messages flow between nodes.
Figure 31 shows the pattern mapping from ROS to Rebeca for publish-subscribe communication
scheme. The ROS code given in this example represents two nodes- “talker” and “listener” and
a topic chatter through which messages are published from node talker to node listener. ROS
implementation of talker node can be explained as shown in Listing 4. Line number 6, is an
initialization function initialized the input arguments and name of the node.Line 7 defines the
node handle which is the main access point of node to communicate with ROS system. Line 8
defines advertise() function which helps to publish messages on a topic. This function registers at
master node and the subscriber node who is subscribed to this topic. The second parameter of
advertise function is the message queue size of the publishing messages through this topic. Line
10 defines the variable count to track the number of messages sent by this node. Line 13 defines
message object ’msg’, in which data is stuffed and then it is published. Line 18 is the publish
function, using which messages are sent.

1 #include ‘ ‘ ros / ros . h”
2 #include ‘ ‘ std_msgs/ String . h”
3 #include <sstream>
4 int main( int argc , char ∗∗argv )
5 {
6 ros : : i n i t ( argc , argv , ‘ ‘ ta lker ” ) ;
7 ros : : NodeHandle n ;
8 ros : : Publisher chatter_pub = n . advert ise<std_msgs : : String >( ‘ ‘ chatter ” , 1000);
9 ros : : Rate loop_rate (10) ;
10 int count = 0;
11 while ( ros : : ok ( ) )
12 {
13 std_msgs : : Str ing msg ;
14 std : : str ingstream ss ;
15 ss << ‘ ‘ he l l o world ” << count ;
16 msg . data = ss . s t r ( ) ;
17 ROS_INFO( ‘ ‘% s” , msg . data . c_str ( ) ) ;
18 chatter_pub . publish (msg ) ;
19 ros : : spinOnce ( ) ;
20 loop_rate . s l eep ( ) ;
21 ++count ;
22 }
23 return 0 ;
24 }

Listing 4: An example for ROS publisher node

Similarly ROS implementation for Listener Node can be defined as shown in Listing 5. Line 1
and 2 include header files which is required to use in the code so as to access general ROS system
components. Line 3 defines the call back function, which is called whenever messages are received
on subscribed topic. Line 11 defines subscribe function with topic name and call back function
name. Line12 is a ROS loop function which is used for calling message callbacks as fast as possible.

1 #include ‘ ‘ ros / ros . h”
2 #include ‘ ‘ std_msgs/ String . h”
3 void chatterCallback ( const std_msgs : : Str ing : : ConstPtr& msg)
4 {
5 ROS_INFO( ‘ ‘ I heard : [%s ] ” , msg−>data . c_str ( ) ) ;
6 }
7 int main( int argc , char ∗∗argv )8
8 {
9 ros : : i n i t ( argc , argv , ‘ ‘ l i s t e n e r ” ) ;
10 ros : : NodeHandle n ;
11 ros : : Subscriber sub = n . subscr ibe ( ‘ ‘ chatter ” , 1000 , chatterCallback ) ;
12 ros : : spin ( ) ;
13 return 0 ;
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14 }

Listing 5: An example for ROS subscriber node

Figure 31 shows the pattern mapping from ROS to Rebeca for publish-subscribe communication
scheme. The model is given in Listing 6In Rebeca, the two nodes ’talker’ and ’listener’ are mod-
elled as actors. Now modelling of topic were initially designed to be modelled as message servers.
However, in case of one node being subscribed to more than one topic or different type of messages
are published through the topic; this design may not serve the purpose. During the study, a better
design was derived that topic is also modelled as an actor and this helps to establish communica-
tion between talker, listener and the topic by asynchronous message sending. Rebeca model can
be explained as follows. In the model, ’Talker’ node will be publishing messages continuously at
a rate of 10 time units and this rate is set as environment variable, ’rate’. Since the ’Listener’
had subscribed to this message publishing channel called ’Topic’, it receives all those information
which are getting published.

In Rebeca model, every time messages are published from talker, the message server ’chatter’
is invoked which will set a variable ’messagesent’ to be true. Once this variable is true the actor
corresponding to listener node is called. At listener, we set variable messageReceived =true, which
indicates that messages published from talker has finally received at listener end.

env byte rate =10;
r e a c t i v e c l a s s Talker (10)
{
knownrebecs{

Listener l i s t e n e r ;
Topic chatter ;}

statevars {
boolean message ;}

Talker (){
message=f a l s e ;
s e l f . ta lk ( ) ; }
msgsrv ta lk (){
message=true ;
chatter . sendmsg( message ) ;
message=f a l s e ;
s e l f . ta lk () a f t e r ( rate ) ; }
}

r e a c t i v e c l a s s Topic (10){
knownrebecs{
Talker ta lker ;
Listener l i s t e n e r ;}

statevars {
boolean messagesent ;}

Topic ( boolean message )
{messagesent=message ;
}
msgsrv sendmsg ()
{
i f ( messagesent ==true )
l i s t e n e r . subscr ibe ( ) ;
e l s e
( messagesent=f a l s e ;
}
}

r e a c t i v e c l a s s Listener (10){
knownrebecs {
Talker ta lker ;
Topic chatter ;}
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statevars {
boolean messageReceived ;}

Listener (){
messageReceived=f a l s e ;
}
msgsrv subscr ibe ()
{
messageReceived =true ;
delay ( rate ) ;
messageReceived =f a l s e ;
}
}

main
{
Talker ta lker ( chatter , l i s t e n e r ) : ( ) ;
Topic chatter ( talker , l i s t e n e r ) : ( boolean message ) ;
Listener l i s t e n e r ( chatter , ta lker ) : ( ) ;
}

Listing 6: Rebeca model for ROS Topic communication

3.5.11 ROS Parameter Server

In ROS parameter server is used to store and retrieve parameters during run-time. This facility
in ROS for usage of static data such as configuration parameter management. It can be defined
globally by all the nodes,tools and libraries and thus configuration state of the system can access
it.In Rebeca, we are not modelling any run-time behaviour of the system and there is no configu-
ration file to be updated for Rebeca models. Hence mapping of this ROS pattern is not applicable
in Rebeca.
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Figure 31: Pattern Mapping for ROS Publish-Subscribe Mechanism

3.6 A Pseudo Code for transforming ROS code to Rebeca Model
In this section, we present a pseudo code or an algorithm to transform any ROS code to Rebeca
model. It can be considered as a reference procedure for this transformation. This algorithm aims
to extract relevant information from ROS code such that it can be used as input information for
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developing the Rebeca model.

Algorithm: Mapping Pattern Generation

Input : ROS code of the appl icat ion
Begin :

1 : I f ( Ident i fy src , srv and msg f o l d e r s in the source code )
2 : Open . cpp , . srv and . msg f i l e s
3 : I f ( Ident i fy i n t e r f a c e message fo lde r / appl icat ion f o l d e r s )
4 : Open assoc iated f i l e s to understand implementation
5 : Else do nothing

6 : For ( i =1 to i , where i i s the number of . cpp f i l e s in src f o lde r )

7 : a . Ident i fy the nodes from . cpp f i l e s
8 : b . Ident i fy the var iab le s used , i t s data types and the i r values
9 : c . Ident i fy member funct ions and the i r f u n c t i o n a l i t i e s
10: d . Ident i fy those nodes which are communicating each other

11: Define & I n i t i a l i z e Rebeca main c l a s s with actors i d e n t i f i e d from step 3 . a
12: Define message queue s ize , s ta tevar i ab l e s and known rebecs fo r each actor
13: Define message servers fo r Member funct ions i d e n t i f i e d from step 3

14: I f ( d i s t r ibuted parameters i d e n t i f i e d in step 2)
15: Define environment var iab le s in Rebeca corresponding to parameters .
16: Else do nothing

17: For ( i =1 to j , where j i s the number of . srv f i l e s in src f o lde r )

18: a . Ident i fy the s e r v i c e s def ined with each node
19: b . Ident i fy the purpose of the se rv i c e and nodes involved
20: c . Ident i fy any blocking of processes due to the se rv i c e

21: Define each se rv i c e as message servers

22: I f ( s e r v i c e s are blocking any process )
23: Define and i n i t i a l i z e f l a g var iab le s and message servers
24: Else
25: Define s e r v i c e s using message servers

26: For ( i =1 to k , where k i s the number of messages in msg fo lde r )

27: a . Ident i fy the messages used by each nodes
28: b . Ident i fy the type of messages sharing through each topic

29: I f ( (m > 1 for a node , where m i s number of topic ) | | ( msg data type > 1 ) ]
30: Design Topic as an actor .
31: Else
32 Design the Topic message as argument passing between the actors
33 Else
34 ROS source code not found , mapping cannot be performed

: End

3.6.1 Pseudo code Description

We derived a general procedure for transforming ROS code to Rebeca models and this procedure is
reusable for mapping of any ROS code to Rebeca. The details of our reverse mapping procedure is
shown in Algorithm ’Mapping Pattern Generation’. The main loop if algorithm, which is from Line
1 to Line 5 searches for appropriate folders in the ROS application package. In ROS, elements are
modularised in folders. The relevant ROS code required for developing its model are application
source folder, service folder and messages folder. Once this is found, application source files (.cpp),
services used (as .srv files), messages used (as .msg files) are searched. In addition to this, source
code for any interface messages (specific to application) are also searched if there exist any. From
Line 6, an iteration loop starts to identify nodes from source code (.cpp files). During this itera-
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tion, specification for each node is also identified such as variables used, their data types, value of
variables, member functions used in the node, their functionalities, connected nodes etc. At the
end of this iteration first level of Rebeca model development can be done. As given from Line 11
to 13, Rebeca actors/ Rebecs are defined corresponding to each identified nodes. The connected
nodes in ROS shall be defined as known Rebecs. Message queue size and state variables for each
actors is defined by model developer. Variables can also be defined for an actor by passing them
as arguments from main class. Similarly, identified member functions are modelled as message
servers in Rebeca. Message servers are designed as abstracted functions without any computation
or display functions.

However, the model developer can make changes in model design so as to suite the real system. For
example, not all ROS nodes needs to be a Rebec or not all member functions has to be modelled
as message server. There is no exact procedure for this mapping process. The developer needs
to review and ensure that the model reflects abstract representation of real system. Line 14 to
16 states that distributed parameters used in ROS system can be modelled with environment
variables. Now the focus is to establish communication in the model. Line 17 to 20 shows an
iteration to identify services from each .srv file. Also any service which can result in blocking a
process is identified during this iteration. Now, corresponding to each service, message servers are
defined in Rebeca model. If a service is blocking any process, this can be modelled using a boolean
flag variable whose status can be set to represent this blocking status. This is given from Line
22-25. Communication in Rebeca is non preemptive whereas, communication via services can be
preemptive in ROS. Similar to .srv files, messages defined in each .msg file is iterated to understand
their types and topics used to send these messages. Line 26 -28 describes this iteration. Line 29-32
states that if any node uses more than one topic or if several message types are sent, each topic
shall be defined as an actor. Otherwise the messages published through topics can be mapped as
passing arguments between actors. Line 33 is the else condition for if loop given in line 1. I.e
Rebeca model cannot be developed if src folder, srv folder and msg folders are not found for the
application package.
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4 Electric Site Fleet Management Operation
In this section, modelling and verification of electric site operational behaviour level is presented.
Electric site system can be considered as a concurrent system with several autonomous machines
operating at the same time. The system is designed in such way that these machines are able to
carry out their tasks without colliding with each other and meeting their deadlines. This system
is modelled in Timed Rebeca, since the fleet management operation design requirement includes
timing constraints. This model was developed based on the electric site fleet design. Timing con-
straints and real measurement values used for this model were extracted from expert knowledge.
In other words, this model is not evolved out from a ROS to Rebeca transformation process.

This process consists of several steps as given in Figure 33. In this section, each of these steps are
described as subsections.

Figure 33: An Overview of Fleet Management Model Development

4.1 Understanding Electric Site Case study
In this section, we describe the case study of Electric Site fleet management. Electric Site project
involves operating an electrified quarry site where materials are transported from one place to an-
other. Electric Site fleet management is a prototype for managing a fleet of HX machines navigating
autonomously and carrying out predefined tasks at the quarry site. This prototype gives emphasis
for a non colliding movement of HX machines, deadlock freedom during site operation, no dead-
line miss scenario and in general schedulability of assigned task execution. In this prototype, HX
machines are intended to work in a fleet manner for performing tasks such as material transport,
loading unloading, charging etc. in a cyclic manner. The entire process can be described as follows:
The materials primarily demolished at a quarry site are loaded into a Primary Crusher (PC) where
they are crushed and remnants are loaded. The materials are then transported and unloaded to
Secondary Crusher (SC). Machines are also loaded using a Wheel Loader from previously stocked
pile of materials. HX machines are used for transporting activities and unloading. In this par-
ticular scenario, individual machines are assigned for unique task like getting loaded at the wheel
loader or at PC, unloading at SC, charging at charge stations, navigating or in queue up state.
The machines are unloaded at secondary crusher point. There is a charge station consisting of two
chargers for fueling up the machine during operation and every returning machines from unload-
ing point shall be charged to full battery. Figure 34 shows a pictorial representation of this process.

Details obtained from design diagram of fleet management prototype are as follows. The Beginning
of the operation can be considered from that point where machines are queued up at ’Decision
Point’. At this point, a decision is taken whether the first machine in the queue is moving to PC
or Wheel loader. This decision is based on two conditions - 1) PC is in operation and 2) There
shall be two machines assigned for task execution at PC at any time. Thus, condition for machines
to move towards wheel loader are 1) PC is not in operation or 2) There is already two machines
assigned for task execution at PC. Note that the HX machines and Wheel loader are mobile points.
We verified in design architecture model that each HX machine has a right knowledge of wheel
loader’s current position. The materials loaded by HX machines at PC or at wheel loader will be
transported to SC. The path segment through which this transportation takes place is a collision
prone area, since machines from PC and wheel loader locations tends to meet together. Thus,
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a critical section is designed at this path and only one machine is allowed to pass through this
section. Also there is control on machine speed and also a safe distance is maintained by each HX
machines during the navigation. At SC, materials are unloaded and further machines are designed
to move towards charge stations. There are two charge stations, where a single machine could be
charged at a time. Thus until a charge station is available, HX machines queue up waiting for its
turn.

Figure 34: Fleet Operation Prototype

4.2 Abstracted Fleet Management Prototype
An abstracted and generic representation of fleet management prototype was developed based on
design diagram as shown in Figure 35. The fleet path is divided into seven segments from S1 to
S7. Each segment has predefined lengths and speed profiles assigned to it. Such fleet management
of machines can be found under several applications such as aviation machinery, large scale mining
operations, vehicle telematics etc. where efficiency and productivity can be increased. This is a
generic design design of fleet management and it can be scaled up for various configurations or
specific requirements. The major points to be considered for modelling of this design are as below:

• Number of machines participating in fleet operation - There shall be an optimum number of
machines with which the entire operation can be scheduled within the designed area.

• Critical sections of the path - These are the intersecting points of two path segments during
operation which is one of the collision prone areas. Thus, only one machine shall be allowed
within this critical area.

• Decision points at fleet path - There are predefined points in the fleet path where certain
decision are taken to proceed with the operation. These decisions are based on specific
conditions of fleet requirement.

• Queue up Points - These are the points where machines queue up due to blocked processes
such as crossing of critical sections, unavailability of charge stations etc. One design criteria
shall be to minimize the queue up frequency.
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In Figure 35, a generic example of fleet management operation is shown including the above
design characteristics. The events mentioned in the figure can represent various resources such as
primary crusher, secondary crusher, charge stations etc. as shown in Figure 34. We assume that
the operation starts at Event 4, from which segment S4 leads to a decision point. From this decision
point, machines can move towards Event 1 or Event 2 through segment S5 and S6 respectively.
Once the process is executed at Event 1 and Event 2, machines shall proceed to a queue up point
at the start of segment S2. However, the machines reaching to this point from Event 1 shall cross
a critical section where segments S6 and S7 crosses each other. At the queue up point, machines
wait for their turn to process at Event 3 and returns to the starting position (Event 4).

In this scenario, Event 4 can be considered as a charge station from which machines are moving
out with full battery charge. Segment S4 can be defined as a high speed profile since the chances of
collision and queue up is less. S4 leads to a decision point, from which machines can move towards
two different loading points. Thus Event 1 and Event 2 could be loading process events. Event 3
could be an unloading spot where materials loaded from Event 1 and 2 are dumped. Thus segments
connecting Event 1, Event 2 and Event 3 are high traffic area and hence the corresponding segments
has to be defined with reduced speed along with maintaining safe distances between machines.
Similar to S4, Segment S3 can also be defined as a high speed profile segment.

Figure 35: Fleet Path for Operation Procedure

4.3 Timed Rebeca Model of Fleet management Prototype
In this Timed Rebeca model, we verify the collision avoidance property of HX machines. The
modelling logic can be explained as follows: Every segment in the fleet is divided into few sub
segments. Each sub-segment has predefined length and speed profiles. Each navigating machine
arriving at a sub-segment shall request for permission acknowledgement in order to proceed to
the next sub-segment. If the preceding sub-segment is free, i.e. when it is available without a
machine occupancy, the requested machine gets permission signal and is able to exit the current
sub-segment and enters the new one. Otherwise, the machine stops at a “safe distance” from
the next sub-segment until it gets the permission. Since we assure the existence of one machine
inside a sub-segment, there is no need to check the collision while a machine is traveling inside a
sub-segment. There are a few parameters in the model that are used in this model development,
which are as given below:

• RESENDING PERIOD: The machine which is waiting for entering into new sub-segment,
re-sends the request after elapsing a specified time, which is termed as ’resending period’.
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• NORMAL SPEED: Machines are designed to be navigate with specific speed profiles. Normal
speed is the speed profile for most of the times.

• REDUCED SPEED: In a few segments, machines have navigate with a lesser speed profile,
which is termed as ’reduced speed’.

• SAFE DISTANCE: Vehicles must be in a safe distance from each other. When a vehicle wants
to exit its current sub-segment, it must stop in a safe distance from the next sub-segment as
there may be another vehicle at the beginning of the next sub-segment.

• SEGMENT LENGTH: the length of each sub-segment

• PROCESS TIME 1 : The process time at Event 1

• PROCESS TIME 2 : The process time at Event 2

• PROCESS TIME 3: The process time at Event 3

• PROCESS TIME 4: The process time at Event

• NUMBER VEHICLES: The number of vehicles in the system

For developing Timed Rebeca model, the above variables has been specified with certain sam-
ples values which are as follows. Normal speed and reduced speed are defined to be as 30 km/hr
and 10 km/hr respectively. The entire fleet distance is 1000 meters with each connecting segments
to be 200 meters. Process time at Event 1 and 2 are 60 seconds each and that at Event 3 is 30
seconds. Event 4 has a processing time for 60 seconds. The number of vehicles has been defined
as four. The model aims to verify the schedulability of fleet management operation and to verify
collision free property of the fleet design with above characteristics.

Figure 36 shows the modelling logic representation for fleet management timed Rebeca model.
Each resource points and the segments are represented as an actor in the model. I.e each Event
and each segment shall be mapped as a Rebec and number of machines are modelled as messages
which are being sent between Rebecs. Actor segment contains several sub-segments defined in its
class which sends messages to other actors such as Event 1, Event 2, Event 3 and Event 4. These
messages are permission requesting or permission grant acknowledgements and they are modelled
as boolean variables. Path segment representing critical section allows the navigation of only one
machine at a time. Speed values for each segment and safe distance are defined in the model.

In the model, all the predefined times and values such as resending period, normal speed, reduced
speed, safe distance, segment length, loading-unloading duration, charging time and number of
machines are defined as environment variables. Every machine has a machineID and permission
acknowledgement is send with the reference of this ID. Status of each task execution is modelled
using boolean variables in corresponding actor class. If a machine is not allowed to move forward,
it is modelled as resending permission for that machine to move forward after a wait time. A
assertion (false) statement is included to verify the schedulability and non collision property of
model execution after one cycle of operation. Once the model checking reaches assertion (false)
statement, the process stops and state space is generated for the performed model checking cycle.
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Figure 36: Representation fleet management model

4.4 Verification of Fleet Management Model and Results
In Fleet Management Model, we have modelled the scenario of fleet operation of HX system with
timing constraints, distance parameters, fleet size and segment speed profiles of real system. We
are modelling and verifying the concurrent behaviour of fleet operation prototype. Below are the
properties which shall be evaluated with fleet model.

• Schedulability
Schedulability can be explained as a state where all the assigned tasks and missions were
executed successfully by every machine in the fleet while satisfying the specified constraints.
Since we are modelling the prototype with real system parameters such as segment distance,
time duration for resource operation, speed profiles, number of machines etc. a satisfied
verification result gives an assurance that the real system shall also be schedulable.

• Reachability
Reachablity is a condition where all the states in the system are reachable or there are no
states which are held as blocked or unavailable. Reachability problem is a common issue
in concurrent system. This is because when a waiting state is held off due to a blocking
resource. Reachability is a default property verification in Rebeca.

• No-Deadlock Detection
Deadlock is not a preferred condition in any concurrent system, where the system execution
does not progress beyond a locked state. While modelling the system with non deterministic
logic, the model shall be carefully developed. Since the HX systems are autonomous, deadlock
detection is one criteria to be evaluated.

• No-Deadline miss Scenario
Even though this system doesnot specify any hard deadlines like in real time systems, deadline
can be considered as meeting the specified conditions at each resource point. Using routing
algorithms in asynchronous system can potentially introduce deadlocks, however the system
takes care of it by restricting path diversity or by using extra resources. This shall be verified.
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• Collision free Navigation
Generally model checking verifies static scenarios. However, by abstract interpretation we
are verifying the operational system behaviour. I.e to check if there is any possibility for a
collision in the system prototype. The collision prone areas are guarded with critical sections
and gateways in the system. Also safe distance is maintained between machines to avoid
hitting each other. This property shall also be verified.

Schedulability and collision free properties are verified in the model by its design. Dead lock free-
dom and Non Deadline miss are verified in Afra model checker by default. Once the complete
model of the fleet management has been created, the Afra model checking tool verifies whether
the schedulability properties hold in all reachable states of the system. A counterexample will be
produced if there are any deadline violations which denotes the trace of states that resulted in
violation. In the model, state space generated at the end of each cycle of operation is analyzed
to see the current state and transitions undergone by each resource. Also the total time taken to
complete one cycle of operation is included in the result. In the verified result, checked properties
lists as below:

< model − checking −report>

< system − info>
<total−spent−time>1</total−spent−time>

<reached−states >572<>/reached−states>

<reached−t rans i t ions >680</reached −t rans i t ions >

<consumed−mem>125840</consumed−mem>

</system−info>

<checked−property>

1 <type> Reachability </type>

2 <name> Deadlock−Freedom and No Deadline Missed</name>

3 <resu l t> asser t ion Failed </resu l t>

4 <message> no message </message>

Line 1 denotes that he reachability properties are satisfied by the model. Line 2 of the result
states that there is no deadlock and no deadline miss possibilities for this model operation. We
have specified ’assertion(false)’ statements in the model so that the model execution stops and
exits out from model execution process. Hence, Line 3 of the result shows that model checking
has been stopped and exited after ’assertion(false)’ statement which shows that schedulability and
non-collision property were satisfied for this one cycle of model execution.

The model checking report also shows that there are a total of 572 states and 680 state transitions
possible with this model. The verified properties are assured to be satisfied in all these states.
Obtaining such a verification assurance is a tedious and time consuming using functional testing.
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5 Conclusion and Future Work
5.1 Summary
In this thesis, we explored the potential of using Rebeca Modelling language to analyze a dis-
tributed concurrent complex system. Rebeca is an actor based language supported by formal
verification methods. It bridges the gap between real applications and formal verification. Rebeca
models for this study were developed in Afra, which is the model checker tool supported by Re-
beca. In this study, we analyzed concurrent operations of autonomous machines at an electrified
quarry site using Rebeca models. Schedulability and non collision property of fleet management
prototype was verified using these models. Since the operation involved certain timing parameters,
the model was developed as timed rebeca model. Timed Rebeca model is an timed extension of
Rebeca. Deadlock freedom and No-deadline miss properties are automatically verified in Afra. We
also analyzed distributed architecture of the autonomous machines and verified its properties. The
models for verifying distributed architecture were developed as Core Rebeca models, since we did
not focus on timing constraints of it. This architecture was designed in a robotic framework termed
’Robot Operating System’(ROS) and hence the analysis involved a process of transformation from
ROS to Rebeca. This process leads to derive certain mapping patterns between ROS and Rebeca
which can be used for any ROS code. The transformation process has been structured into an
algorithm which can be used for future scope.

The verification results obtained from the model checking process shows the number of state tran-
sitions which a complex system can undergo during operation. The properties that we verified were
selected by referring to similar works done and based on opinions from experts. Properties of core
rebeca models uses LTL specifications and their results assure safety during machine navigation.
However, we have not considered all the aspects for covering safety assurance, but the properties
verifies basic system functional requirements. Properties of timed rebeca model assures schedu-
lability and collision free navigation of fleet management prototype. Nevertheless, there may be
several factors for a complex system for resulting in an emergent behaviour. We are not looking
into those areas in this study. This study primarily shows the ability of Rebeca modelling language
in analyzing a ROS based distributed concurrent system and in verifying their properties.

5.2 Discussion
Merits of formal verification(FV) is popular and FV is a growing field for more than thirty years[30].
Using FV, we can prove or disprove a system design conformation to its requirements. Distinctly,
an actor model is a concept to represent concurrent computation of a system. A combination
of these two technologies can be a real benefit in validating real applications which are difficult
to verify using other methods. Rebeca is an actor based modelling language which is supported
by formal verification semantics and is suitable for verifying real time concurrent systems. Such
modelling has several advantages. Firstly, the model can specify formal properties. A model can
be true copy of the real system, however a modelled system is always deterministic. This means
that for the same input given to a model, we get same outputs all the time. It cannot produce
emergent characterizes which is possible in real system. In other words, a complete assertion is
not possible with physical realization of a system. Hence a good model shall abstract relevant and
significant features of the real system without increasing its complexity. Timed Rebeca helps to
develop lower level of abstraction. A Timed Rebeca model developer can abstract the relevant
functional features of a system together with the timing constraints for both computation and
network latencies, and analyze the model from various points of view[51].

At this point of study, we are in a position to answer the research questions defined at the initial
phase of the study. The major task of this thesis was to understand the ROS code, relevant ab-
straction of its features and transform it into Rebeca models. This process involves identification of
executable features of ROS such as ROS nodes, ROS services, ROS topics and so on. The function-
ality and relation between these features needs to understood and to be abstracted to transform
it into rebeca semantics. We found that most of the semantics in ROS can be accomplished in
Rebeca model. However, certain features could not be transformed. Also computational details
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and other implementation specific functionalities cannot be mapped towards Rebeca. Neverthe-
less, once this process is done, a procedure to perform this transformation can be derived. In other
words, this process can be automated. Here automation refers to a standard algorithm which can
be used for any ROS code to be transformed to Rebeca models. Another research question aimed
at understanding the challenges involved in ROS to Rebeca mapping process. When mapping
from a robotic framework to a formal model, there can be a lot of inconsistencies which needs
to be solved. However, it is not an easy task to solve all of them. Thus the idea is to overcome
these factors in a harmless way such that it won’t affect any other part of the system/model. One
major challenge was to find a balance in abstracting the details of real system when mapping to
its model. The computations or calculations involved in the real system could be abstracted, but
their outcome has to be included in the model. Also an extensive compositional verification can
lead to huge state space generation and can lead to state space explosion.

Property verification is the core of model checking process. The properties to be verified are usually
the desired system requirements. In this thesis, there was a challenge in identifying these properties.
This is because desired system requirements were not known at the time of conducting the study.
Hence we had to get inspiration from similar studies, where formal verification methods were used
for analyzing a distributed system. Also we took a few hints from expert knowledge in identifying
certain properties. The identified properties include safety and liveness related properties. Anyhow,
in Rebeca we specify these properties using LTL statements and the verification result includes
the state transitions undergone while model checking, total time taken for verifying the entire
model and the verification result whether the property is satisfied or not. However, there are some
limitations for this process. The success of model checking solely lies in quality of the developed
model. We have not set any criteria for measuring the quality of the developed model. The only
focus was on not abstracting any relevant feature of the real system.

5.3 Future Work
The approach taken in this study is ’Actor based formal modelling and verification’. It is one of the
option to analyze a distributed concurrent system. A predefined extension for this work is to use
another modelling tool called Ptolemy which is a powerful visual simulation tool. Thus a simulated
environment of the case study could be obtained using Ptolemy modelling. Further, this study
was a stepping stone to explore the potential of Rebeca in analyzing a distributed robotic system
architecture. The results shows that Rebeca is a good reference tool for modelling systems having
concurrent computation. This study could be extended to a step higher to define and investigate
more design properties by manipulating the system architecture to generate more input data for
enhancing the analysis.

Two different models were used for design architecture modelling in this study. This analysis can be
made extensive by developing several models with further details. Similarly for modelling the fleet
management operation, the fleet configuration can be modified by adding or removing resources.
Also for the existing configuration, optimization of a significant parameter can be evaluated.

5.4 Validity Threat
For the model development, ROS to Rebeca transformation is done in this study. However, there
is no performance criteria set to measure the quality of the models developed. In order to avoid a
state space explosion, models are developed with balance of maintaining complexity of system state
without abstracting significant features of real system. The verified properties are based on the
model behaviour, however there may be several unknown factors which could affect the real system
to show emergent behaviour. This is not covered in the models and also the results obtained from
this study are not validated against the real system. Similarly, the amount of information derived
from design architecture and level of abstraction made to the model is of utmost importance and
can affect the results dramatically if administered in a different way.
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