
FORMAL SPECIFICATION AND VERIFICATION OF

CONCURRENT AND REACTIVE SYSTEMS

By

Marjan Sirjani

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

SHARIF UNIVERSITY OF TECHNOLOGY

AZADI AVE., TEHRAN IRAN

JUNE 2004

c© Copyright by Marjan Sirjani, 2004

SHARIF UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF

COMPUTER ENGINEERING

The undersigned hereby certify that they have read and recommend

to the Faculty of Graduate Studies for acceptance a thesis entitled “Formal

Specification and Verification of Concurrent and Reactive Systems”

by Marjan Sirjani in partial fulfillment of the requirements for the degree of

Doctor of Philosophy.

Dated: June 2004

External Examiner:
Dr. Meibodi

Research Supervisor:
Ali Movaghar

Examing Committee:
Seyed Hassan Mirian

Dr. Ardeshir

Dr. Sharifi

ii

To my husband, my children, and my mother.

iv

Table of Contents

Table of Contents v

List of Tables viii

List of Figures ix

Abstract xi

Acknowledgements xiii

1 Introduction 1

1.1 Formal Modeling and Verification of Reactive Systems 1

1.2 Related Work . 6

1.3 Thesis Outline . 12

2 Rebeca: The Modeling Language 14

2.1 Introduction . 14

2.2 Syntax . 16

2.3 Semantics . 21

3 Compositional Verification in Rebeca 29

3.1 Introduction . 29

3.2 Model Checking Rebeca Models . 32

v

3.3 Compositional Verification in Rebeca: Components 34

3.4 Formal Justifications . 40

3.5 An Example: Dining Philosophers . 48

4 Extended Rebeca 54

4.1 Introduction . 54

4.2 Syntax . 56

4.3 Semantics of Rebecs . 60

4.4 Components . 65

4.5 An Example: Bridge Controller . 69

4.6 Formal Verification of Properties . 71

5 A Tool for Model Checking Rebeca 81

5.1 Introduction . 81

5.2 The Rebeca Verifier . 82

5.3 Translating Rebeca to SMV . 85

5.4 Translating Rebeca to Promela . 89

5.5 Creating Components and Module Checking 91

5.6 An Example: Bridge Controller . 92

6 Case Studies 98

6.1 Introduction . 98

6.2 Bridge Controller . 100

6.3 Dining Philosophers . 101

6.4 Readers and Writers . 103

6.5 Leader Election . 104

6.6 CSMA/CD Protocol . 108

7 Rebecs as Components in a Coordination Language 118

7.1 Introduction . 118

vi

7.2 Reo: a Coordination Language . 119

7.3 Rebecs as Components in Reo . 125

7.4 Constraint Automata: Compositional semantics of Reo 128

7.5 Compositional Semantics of Rebeca using Constraint Automata 140

7.6 An Example: Bridge Controller . 143

8 Conclusion and Future Work 148

Bibliography 153

vii

List of Tables

5.1 Mapping Rebeca Constructs to SMV . 89

5.2 Mapping Rebeca Constructs to Promela 90

6.1 Trains and the Controller: Closed-World Compared to Component-Based

Approach (results generated by NuSMV) 100

6.2 Dining Philosophers: Closed-World Compared to Component-Based Ap-

proach (results generated by NuSMV) . 103

6.3 Readers and Writer: Closed-World Compared to Component-Based Ap-

proach (results generated by NuSMV) . 103

6.4 CSMA/CD Versions Compared using NuSMV 115

viii

List of Figures

1.1 Rebeca: Language, Theory and Tool . 5

2.1 Reactive Class, Rebec and Model Definition Syntax 18

2.2 Producer-Consumer Example . 20

2.3 Summary of Definitions . 23

2.4 Operational Semantics of a Rebeca Model. 24

2.5 Producer-Consumer Example with Dynamic Behavior 28

3.1 Summary of Definitions for Components 39

3.2 Operational Semantics of a Component. 39

3.3 Dining Philosophers Example . 50

4.1 Bridge Controller Example, Modeled in Extended Rebeca 70

5.1 Rebeca: Supported by Tool . 83

5.2 Use Case Diagram of Rebeca Verifier . 86

5.3 Component Diagram of Rebeca Verifier 87

5.4 Bridge Controller Example . 93

5.5 A Snapshot of the Tool, Creating a Component from Bridge Controller

Example. 97

6.1 A Snapshot of the Tool, Creating a Component from Dining Philosophers

Example. 102

6.2 Leader Election Example: HS Algorithm 106

ix

6.3 Leader Election Example: LCR Algorithm 107

6.4 The MAC Sublayer of CSMA/CD Protocol 109

6.5 State Chart of a MAC Showing theSend Cycle 110

6.6 Rebeca Code for MAC . 113

6.7 Rebeca Code for Medium . 114

7.1 Components and Connectors . 120

7.2 Nodes in Reo . 122

7.3 Exclusive Router . 123

7.4 Modeling Rebeca by Reo . 126

7.5 Constraint Automaton for a 1-Bounded FIFO Channel 132

7.6 Constraint Automata for Basic Connectors 134

7.7 The Merger . 136

7.8 Parameterized Constraint Automaton for a 1-Bounded FIFO Channel . . . 136

7.9 The Algorithm for Constructing the Parameterized Constraint Automaton

from a Rebec Code . 141

7.10 Constraint Automaton for the 4-Bounded Message Queue Channel 143

7.11 Modeling Train by Constraint Automata 146

7.12 Modeling Controller by Constraint Automata 147

x

Abstract

Rebeca (Reactive Objects Language) is an actor-based language for modeling concurrent

and distributed systems. Providing a formal foundation, Rebeca is designed in an effort

to bridge the gap between formal verification approaches and real applications. Its Java-

like syntax and object-based style of modeling makes it easy to use for software engineers.

A front-end tool is developed as an integrated environment to create Rebeca models and

translate them into existing model-checker languages.

The encapsulated structure of reactive objects, and the asynchronous communication

mechanism (with no blocking from either sender or receiver), lead to a natural modular

design and loosely coupled modules. This is exploited to apply compositional verification

and abstraction techniques and reduce the state space, and hence, make it possible to verify

complicated reactive systems. In the compositional verification approach, sub-systems are

defined based on an user-defined decomposition of the model. Sub-systems are more ab-

stract than the model itself, and so we can reduce the state space of the model which makes

it more amenable to model checking techniques. Using weak simulation relation between

the constructs, it is proved that the abstraction techniques preserve a set of behavioral spec-

ifications in temporal logic.

Rebeca is then extended with a formal concept of components to provide a general

framework which integrates both synchrony and asynchrony. Components are used to en-

capsulate a set of internal reactive objects. Components interact only via asynchronous and

anonymous messages, while the internal reactive objects interact by asynchronous and also

synchronous message passing mechanisms.

Semantics of Rebeca is specified compositionally, by mapping Rebeca models into the

xi

xii

coordination language, Reo, and using Constraint Automata as its semantics. Modeling

the coordination and communication mechanisms between reactive objects is done by Reo

circuits, and the behavior of each reactive object is specified by constraint automata as a

black-box component within the Reo circuit.

The Rebeca Verifier tool is used to model check typical simple case studies and some

medium-sized case studies. The Experimental results show that where the computing para-

digm in modeling distributed and concurrent systems is asynchronous, and the interprocess

communication mechanism is message passing, Rebeca can be used easily and efficiently.

Also, there are patterns of models in which our compositional verification approach can be

applied in a scalable way and thus a significant reduction can be gained in verification of

desired properties.

Acknowledgements

I would like to thank my supervisor, Professor Ali Movaghar, for his constant guidance

and support during this research. Also, I would like to thank the referees, Professors Mo-

hammad Ardeshir, Rassoul Jalili, Mohammad Reza Meybodi, Seyyed Hassan Mirian, and

Mohsen Sharifi for their careful reading and suggestions on the thesis.

I wish to thank Michael Huth for his helpful suggestions and discussions; Ramtin Khos-

ravi for his valuable comments on actor semantics; Mohammad Reza Mousavi for his help

on the compositional verification approach for Rebeca; Frank de Boer for showing inter-

est in Rebeca and suggesting extended Rebeca; Christel Baier for carefully reading the

theorems and checking my proofs; Dennis Dams for his helpful discussions on the tool;

Farhad Arbab and Jan Rutten for their support and inspiring comments. Marcello Bon-

sangue, Farzan Fallah, Jozef Hooman, and Clemens Kupke also helped me by their useful

comments.

I would also like to thank Rebeca Group at University of Tehran and Sharif Uni-

versity of Technology, Amin Shali, Mohammad Mahdi Jaghouri, Hamed Iravanchi, El-

ham Mousavi, Mona Mojdeh, Sara Forghanizadeh, Niloufar Razavi, Fatemeh Alavizadeh,

Niusha Hakimipour, Hossein Hojjat, Ehsan KhamesPanah, Azin Moallem , Elham Moazen,

Hootan Nokhost, and Kamyar Rafati, not only for their help in developing and using the

tool but also for their smart and creative comments. I wish to thank Salar Mesdaginia,

Mohammad Sadegh Makarem, Mehdi Niamanesh and Hamid Reza Shahriari for spending

xiii

xiv

some time studying and working on Rebeca.

Many thanks to my husband whom without his support I never could finish my work,

my children who never understood why their mother still has to study, and my mother who

sacrifices a lot during these years. Finally, many thanks to my father who taught me to

respect two things: truth and mathematics, and my sister from whom I learned a lot in

absence of my father.

Chapter 1

Introduction

1.1 Formal Modeling and Verification of Reactive Systems

Reactive systems are systems which have ongoing interactions with their environments,

accepting requests and producing responses [40]. Such systems are increasingly used in

applications where failure is considered as fatal, such as electronic commerce, high-speed

communication networks, traffic control systems, avionics, and automated manufacturing.

Correct and highly dependable construction of such systems is particularly important and

challenging. A very promising and increasingly attractive method for achieving this goal

is using formal verification.

1

2

A formal verification method consists of three major components: a model for de-

scribing the behavior of the system, a specification language to embody correctness re-

quirements, and an analysis method to verify the behavior against the correctness require-

ments [41, 41, 17, 30].

Object-oriented modeling is widely used for representing reactive systems, with amenabil-

ity to concurrency and distribution. The actor model [28, 6, 8] is a better candidate than

customary object oriented models, because the units of distribution and concurrency are

objects themselves and not threads, as in Java. This provides a simpler and more natural

concurrency model. The actor model also promotes independent computing entities to

support migration, distribution, dynamic reconfiguration, openness, and efficient parallel

execution.

Much work has been done on formal methods with different kinds of models for system

behavior and different verification approaches; also, the actor model is used in different

ways for modeling open, distributed systems. But to the best of the author’s knowledge,

little is done on verifying actor languages (related work is discussed in Section 1.2).

In this thesis we present a formal method for specifying and verifying properties of

reactive systems, using an actor-based modelRebeca1 [53, 56]. Rebeca is inspired by the

1Reactive Objects Language

3

actors paradigm, but goes well beyond it by adding the concept ofcomponentsand the

ability to analyze a group of active objects as a component. Also, we haveclassesthat

active objects are instantiated from. Classes serve as templates for state, behavior, and the

access interface; adding reusability in both modeling and verification process. Our method

is supported by a front-end tool for the translation of Rebeca models into languages of

existing model checkers. In order to cope with the problem of the state space explosion

we propose a compositional verification approach which exploits the modular features of

Rebeca models and their decompositionality into components.

More specifically, the key features of this thesis are:

• using theactor-basedasynchronous event-driven model for the specification of reac-

tive systems;

• introducingcomponentsas open (sub-)systems as a basis for compositional verifica-

tion;

• presenting aformal semanticsfor the model and components, comprising their states,

communications, state transitions, and the knowledge of accessible interfaces, which

provides a formal basis for proving the correctness of our abstraction and reduction

techniques;

4

• using differentabstraction techniquesbased on the computing paradigm of the lan-

guage which preserve a set of behavioral specifications in temporal logic, and which

reduce the state space of a model, making it more suitable for model checking;

• establishing the soundness of these abstraction techniques by proving aweak simu-

lation relation between the constructs;

• enriching Rebeca with a formal concept of reusable components and an additional

communication mechanism based on synchronous message-passing, proposing ex-

tended Rebeca;

• presenting a tool for translating Rebeca models into target languages of existing

model checkers, enablingmodel checkingof actor-based models;

• modeling case studies in Rebeca and applying thecompositional verificationap-

proach, using the specified abstraction techniques;

• providing compositional semantics of Rebeca, using the coordination language Reo

to model the coordination and communication between reactive objects, and Con-

straint Automata to model each reactive object.

In Figure 1.1, we summarize the language, verification approach, underlying theories,

and tool features, together with their relationships.

5

Properties
(based on Rebeca model)

reusable components

components as submodels

(decomposition)

(composition)
Abstraction

Compositional verification
(modularization)

Rebeca models

Close model Component

Rebeca language

Back−end model checkers

NuSMV
(SMV language)

Spin
(Promela language)

Rebeca
(language, theory, and tool)

(Formal semantics)

Tool

Rebeca, extended

(based on actor model

and UML state chart)
(based on actor model)

Rebeca, kernel

Figure 1.1: Rebeca: Language, Theory and Tool

6

1.2 Related Work

Verification techniques and corresponding tools have been developed for analyzing pro-

grams and models. Programs implementing real systems are usually too heavy and de-

tailed for applying formal verification approaches. Hence, different abstraction techniques

on both data and control are used to make the analysis process possible. On the other hand,

formal modeling languages may be too abstract or too mathematical and not easy to be

used by software engineers. Model checker tools, like SMV [1] and Spin [4], are devel-

oped with their own specific modeling languages which can be used directly for modeling

systems and verifying their properties. Their modeling languages are designed to be suit-

able for applying model checking techniques and are not based on a formal semantics nor

on a software development paradigm. They are sometimes used as back-end languages to

which modeling or programming languages are translated.

Rebeca is different, by providing a powerful yet simple paradigm based on actor model,

and an easy to use, java-like, object-based syntax for software engineers in modeling, and

also a naturally decomposable model and independent modules which can be exploited in

formal verification and model checking.

7

Modeling Languages Different languages have been proposed for modeling concurrent

and distributed systems at different levels of abstraction. These languages also vary with

respect to the formalization of their semantics and corresponding verification techniques,

and to what extent these formalizations are supported by tools.

Examples of languages which provide a high-level of abstraction are CSP2 [29], CCS3 [45,

46], I/O Automata [39], and RML4 [12]. RML is supported by the model checker Mocha [10];

and FDR5 [49] is the proof and analysis tool for CSP.

Model Checking Existing Languages On the other hand, verification techniques and

corresponding tools have also been developed for existing programming languages. For ex-

ample, the NASA’s Java PathFinder [27] is a translator from a subset of Java to Promela [4].

Its purpose is to establish a framework for verification and debugging of Java programs

based on model checking. The Bandera Tool Set [23] is an integrated collection of program

analysis, transformation, and visualization components designed to allow experimentation

with model-checking properties of Java source code. Bandera takes Java source code and

a specification written in Bandera’s temporal specification language as input, and it gen-

erates a program model and specification in the input language of one of several existing

2Communicating Sequential Processes
3Calculus of Communicating Systems
4Reactive Modules Language
5Failures/Divergences Refinement

8

model-checking tools. SLAM [3] is a Microsoft’s project for verification of C programs

and debugging software via static analysis. The tools mentioned here, in principle can be

applied directly to the verification of the actual implementation. However in practice such

verification is only possible after an application of certain abstraction techniques to both

the data and control [23].

Model Checkers Another approach is to use the language of a model checker itself in

modeling concurrent and distributed systems. Some of these tools are successfully used in

analyzing real systems, like NuSMV [1] and Spin. The NuSMV system is a tool for check-

ing finite state systems against specification in the temporal logic LTL6 and CTL7 [24].

Spin is a widely distributed software package that supports the formal verification of dis-

tributed systems. Spin uses a high level language to specify systems descriptions, called

Promela 8 and LTL is its specification langauge. However these languages are designed

for model checking purposes and their formal semantics are usually not explicitly given.

Using these tools also needs certain expertise.

Apart from the identification of suitable language characteristics which mainly concern

modeling issues like the level of abstraction, modularity and usability for practitioners, the

6Linear Temporal Logic
7Computational Tree Logic
8Process meta language

9

two main approaches in formal verification both have their own deficiencies: Model check-

ing in general suffers from the state-space explosion problem and deductive verification

techniques require a high expertise and intensive interaction with the underlying theorem

prover. In general, compositionality allows one to master both the complexity of the design

and verification of software models. Decomposing a model into sub-models, verifying the

properties of sub-models, and deducing the overall property is the main idea in composi-

tional verification methods. Compositional verification can be exploited effectively only

when the model is naturally decomposable [22].

Compositional Verification Compositional verification has been used in different ways

in the analysis of models of concurrency. Abadi and Lamport [35, 5] explained an approach

for composing specifications and verifying their properties. They used TLA9 as their mod-

eling language and also for describing properties, and applied assume-guarantee reasoning

for compositional verification. Clarke, Long and McMillan [18] used interface processes to

model the environment for a component. They modeled systems as finite transition systems

and used CTL to specify their properties.

Input-output automata for modeling asynchronous distributed systems are introduced

by Lynch and Tuttle [38, 39]. They showed how to construct modular and hierarchical

9Temporal Logic of Actions

10

correctness proofs for their models. Kesten and Pnueli [33] mentioned modularization and

abstraction as the keys to practical formal verification, using fair Kripke structure as the

computational model for reactive systems and temporal logic as a requirement specifica-

tion language. An extension of bisimulation in a compositional proof of correctness of a

protocol is used by Larsen and Milner in [37]. Alur and Henzinger [12] proposed RML

for modeling a system and used a subset of linear temporal logic, alternating-time temporal

logic, to specify its properties. RML supports compositional design and verification. Its

compositional verification approach is assume-guarantee.

Actor Model Object-oriented models for concurrent systems have widely been proposed

since the 1980s [6, 16, 21]. Theactor model was originally introduced by Hewitt [28]

as an agent-based language. It was later developed by Agha [6, 7, 8] into a concurrent

object-based model. The actor model is proposed as a model of concurrent computation in

distributed, open systems. Actors have encapsulated states and behavior; and are capable

of changing behavior, creating new actors, and redirecting communication links through

the exchange of actor identities. Valuable work has been done on formalizing the actor

model [8, 42, 59, 60, 26]. The actor model was first explained as a simple functional

model [6, 7, 8], but several imperative languages have also been developed based on it [48,

11

64, 63]. Besides its theoretical basis, the actor model and languages provide a very useful

framework for understanding and developing open distributed systems.

Rebeca In the design of Rebeca both modeling and verification issues played a dominant

role. Object-oriented modeling can be considered as the most successful approach in mod-

eling in the software engineering community. The main motivation in designing Rebeca is

to provide an object-based language with clearly defined encapsulated units of concurrency

which can be easily used by software engineers. Furthermore, Rebeca provides a natural

modular design approach with loosely coupled modules which makes the model suitable

for applying compositional verification techniques.

To the best of author’s knowledge, there is hardly any work on the tool-supported for-

mal verification of actors [56, 50]. In order to integrate the practice of software engineering

and formal verification, Rebeca provides a rigorous semantic basis for an imperative view

of actors. It is designed based on a powerful yet simple paradigm; providing the basic nec-

essary constructs in a Java-like syntax which is easy to use for practitioners. In this thesis

we show how to exploit the event-driven computation model of Rebeca in automated ab-

straction and compositional verification techniques which preserve LTL-X10 and ACTL11

10LTL without next operator
11Universal fragment of CTL

12

properties.

A tool for translating Rebeca to SMV and Promela enables us to model check Rebeca

codes both in closed and open forms. We have used our tool to show that our composi-

tional verification approach reduces the state space in many practical cases [55]. A similar

approach in using abstraction technique for model checking SDL12 systems is discussed

in [31].

1.3 Thesis Outline

Chapter 2 presents the modeling language Rebeca and its syntax and formal semantics for

Rebeca models. Model checking Rebeca models, compositional verification, and compo-

nents as open systems are explained in Chapter 3. Weak simulation, as an abstraction tech-

nique applied to Rebeca components, and the theorems used to formally justify our com-

positional verification approach are defined in this chapter. Chapter 4 explains the Rebeca

model enriched by reusable components and the additional communication mechanism of

synchronous message passing inside these components. In Chapter 5, we introduce our tool

for automatic translation of Rebeca models into existing model-checking languages, SMV

12Specification and Description Language

13

and Promela, and the capabilities of the tool to automatic abstraction and modular verifica-

tion of Rebeca models. Some case studies are presented in Chapter 6. Typical examples are

modeled in Rebeca, and are model checked by the tool. In some examples we show how we

can have a significant state space reduction using our compositional verification approach.

Chapter 7 shows the compositional semantics of Rebeca, using mapping of Rebeca to the

coordination language Reo and Constraint Automata. Chapter 8 concludes the thesis and

shows the direction of possible future work.

Chapter 2

Rebeca: The Modeling Language

2.1 Introduction

Rebeca (Reactive Objects Language) [53, 56] is an actor-based language [28, 6] with a

formal foundation. It can be considered as a reference model for concurrent computation,

based on an operational interpretation of the actor model. It is also a platform for develop-

ing object-based concurrent systems in practice. Formal verification approaches are used

to ensure correctness of concurrent and distributed systems.

Rebeca is similar to the actor model in that it has independent active objects, asynchro-

nous message passing, unbounded buffers for messages, dynamically changing topology,

and dynamic creation of active objects. We add class declarations to the syntax; classes

act like templates for states, behavior, and interfaces of active objects. Also, we have the

notion of a component as a set of concurrently executing active objects, and the role of

14

15

internal and external active objects differs from the one in the original actor model [6]. Our

components are sub-models which are the result of decomposing a closed model in order

to apply compositional verification, and should not be confused with the concept of com-

ponents in component-based modeling which are independent modules with well-defined

interfaces.

Our objects are reactive and self-contained. We call each of them arebec, for reactive

object. Computation takes place by message passing and execution of the corresponding

methods (message server) of messages. Each message specifies a unique message server

to be invoked when the message is to be serviced. Each rebec has an unbounded buffer,

called a queue (or inbox), for arriving messages. When a message at the head of a queue

of a rebec is serviced, its message server is invoked and the message is deleted from the

queue. We may refer to the messages as ’method invocation requests’.

Each rebec is instantiated from aclassand has a single thread of execution. We define a

model, representing a set of rebecs, as a closed system. It is composed of rebecs, which are

concurrently executed, and are interacting with each other. We can introducecomponents

as open systems, consisting of subsets of rebecs in a model.

The execution of a message server is triggered by removing its message from the top

of the queue and results in an atomic execution of its body which cannot be interleaved by

16

any other method execution. Note that this coarse-grained granularity of the interleaving

of methods is compatible with the asynchronous nature of the communication of Rebeca,

which does not contain suspending communication primitives (e.g. a possibly suspending

receive state). It also reduces the state space and makes the model simpler.

2.2 Syntax

The syntax for reactive classes (reactive-object templates), rebecs (reactive class instan-

tiations), and models (parallel composition of rebecs) is presented in Figure 2.1. The

syntax of a<reactive class> definition is similar to Java, except for the definition of

<knownobjects> . The rebecs included in the<knownobjects> part of a reactive class de-

finition, are those rebecs whose message servers may be called by instances of this reactive

class.

After declaring the known rebecs, a list of reactive class fields are declared in<statevars>

part. Then the methods, which may themselves contain local variables, are defined as mes-

sage servers. Variables are typed, and method declarations follow a standard syntax. Unlike

Java, methods have no return mechanism and therefore no return type. The core language

for statements (<statement>) allows the remote method invocation requests (<mir>), as-

signments (<assignment>), if-statements (<conditional>), object creation (<create>),

17

and sequential composition.

In <mir> , after specifying the callee (receiver) id, the method name and actual parame-

ters are included. This can be viewed as a message consisting of the callee id, message id

and the parameters passed to the callee. Although not mentioned explicitly in the message,

the caller (sender) passes its rebec identity (self) to the callee (receiver). Caller and callee

may be the same rebec, modeling local calls (sends to self).

It is required that every reactive class definition has at least one method namedinitial .

In the initial state of the system, each rebec has aninitial message in its message queue, so

initial is the first method executed by each rebec. After defining the reactive classes, there

is a keyword<main> followed by the definition of the Rebeca model which is defined as a

finite collection of rebecs that are (created and then) run in parallel. In declaring a rebec,

the bindings to its known rebecs is specified in its parameter list.Variables are typed and

the variables denoting aknown object, a receiverof a message, and acreatedobject have

to be of typerebec identifier. Rebec identifiers can be passed as parameters, but cannot be

referenced in anassignmentstatement.

We use Producer-Consumer as a simple running example through this chapter to show

the syntax and semantics of Rebeca. We start with a simple version and discuss different

features of Rebeca by extending this example.

18

<model> ::=
<reactiveclasses>
<main>

<reactiveclasses> ::= {<reactiveclass>}+ <reactiveclass> ::=
reactiveclass <reactiveclassName>’(’<queueLength>’)’ ’{’

<knownobjects>
<statevars>
<body>

’}’
<knownobjects> ::=

knownobjects ’{’
{<var>;}*

’}’
<statevars> ::=

statevars ’{’
{<var>;}*

’}’
<body> ::=

{<method>}+
<method> ::=

msgsrv <methodName> ’(’ {<parameters>} ’)’ ’{’
{<statement>;}*

’}’
<parameters> ::=

<var> | <var> ’,’ <parameters>
<var> ::=

<typeName> <varName>
<statement> ::=

<mir> | <assignment> | <conditional> | <create>
<mir> ::=

<varname> ’.’ <methodName> ’(’ {<varname>}* ’)’ ’;’
<create> ::=

<varname> = new <reactiveclassName> ’(’ <knownobjectsBinding> ’)’
<model> ::=

main ’{’
{<rebec>;}+

’}’
<rebec> ::=

<reactiveclassName> <varname> ’(’ <knownobjectsBinding> ’)’

Figure 2.1: Reactive Class, Rebec and Model Definition Syntax

19

Example 1 (Producer-Consumer: a Rebeca model)There is a buffer in which a pro-

ducer puts its products and a consumer which takes the products from it. The producer

cannot put a product in a full buffer and a consumer cannot take a product from an empty

buffer. Also, the buffer is a critical section that both the producer and the consumer cannot

put and take the products in/of the buffer at the same time.

The system consists of reactive classes:Buffer, Producer, andConsumer, that are tem-

plates for defining a buffer, a producer, and a consumer (see Figure 2.2). The known rebecs

of the Buffer are the Producer and the Consumer, and the known rebec of the Producer and

the Consumer is only the Buffer. The Producer and the Consumer do not send messages to

each other directly.

State variables of each rebec are declared after the known objects. The rebec Buffer has

variables to show when the buffer is empty or full, whether the Producer or the Consumer

are waiting, the length of the buffer which is the number of elements in the buffer, and

pointers to the next empty and next full elements which the Producer puts the next product

in it and the Consumer takes the next product from it. The Producer and the Consumer

have no state variables.

State variables are followed by message servers. Each reactive class includes an ini-

tial method as explained earlier. The Buffer has two message servers provided to get the

20

reactiveclass BufferManager(4) {

knownobjects {

 Producer producer;

 Consumer consumer;

 }

statevars {

boolean empty;

boolean full;

boolean producerWaiting;

boolean consumerWaiting;

int bufferCount;

int nextProduce;

int nextConsume;

 }

msgsrv initial() {

 bufferCount = 2;

 empty = true;

 full = false;

 producerWaiting = false;

 consumerWaiting = false;

 nextProduce = 0;

 nextConsume = 0;

 }

msgsrv giveMeNextProduce() {

if (!full) {

 producer.produce(nextProduce);

 }

 else {

 producerWaiting = true;

 }

 }

msgsrv giveMeNextConsume() {

if (!empty) {

 consumer.consume(nextConsume);

 }

 else {

 consumerWaiting = true;

 }

 }

msgsrv ackProduce() {

 nextProduce = (nextProduce + 1) %

bufferCount;

if (nextProduce == nextConsume) {

 full = true;

 }

 empty = false;

if (consumerWaiting) {

 consumer.consume(nextConsume);

 consumerWaiting = false;

 }

 }

msgsrv ackConsume() {

 nextConsume = (nextConsume + 1) %

bufferCount;

if (nextConsume == nextProduce) {

 empty = true;

 }

 full = false;

if (producerWaiting) {

 producer.produce(nextProduce);

 producerWaiting = false;

 }

 }

}

reactiveclass Producer(2) {

knownobjects {

 BufferManager bufferManager;

 }

statevars {

 }

msgsrv initial() {

self.beginProduce();

 }

msgsrv produce(int bufNum) {

 bufferManager.ackProduce();

self.beginProduce();

 }

msgsrv beginProduce() {

 bufferManager.giveMeNextProduce();

 }

}

reactiveclass Consumer(2) {

knownobjects {

 BufferManager bufferManager;

 }

statevars {

 }

msgsrv initial() {

self.beginConsume();

 }

msgsrv consume(int bufNum) {

 bufferManager.ackConsume();

self.beginConsume();

 }

msgsrv beginConsume() {

 bufferManager.giveMeNextConsume();

 }

}

main {

 BufferManager bufferManager(producer,

consumer):();

 Producer producer(bufferManager):();

 Consumer consumer(bufferManager):();

}

Figure 2.2: Producer-Consumer Example

21

requests of the Producer and Consumer. Two other message servers get the acknowledge-

ments of the Producer and Consumer and make the pointers and full/empty indicators up

to date.

The Producer have two message servers, the methodbeginProducerequires an empty

space in the Buffer by sendinggiveMeNextProducemessage to the Buffer, and the method

Produceis called by the Buffer to provide the index of the empty element available for the

Producer to put its product. By executing the methodProducean acknowledgement is sent

to the Buffer and abeginProducemessage is sent to self to repeat the cycle of production.

The body and behavior of the Consumer is similar to the Producer with the symmetric

message servers.

2.3 Semantics

The operational semantics of a reactive system can be defined as a labeled transition system.

Labeled transition system [41] is a quadruple of a set of states (S), a set of labels (L), a

transition relation on states (T), and a set of initial states of the system (S0).

To define operational semantics of Rebeca, we first formalize the definitions of a rebec,

a model, and their constituents (Figure 2.3). A rebec,r i , with a unique identifieri, is defined

as a triple<Vi ,Mi ,Ki >, whereVi is the set of its state variables,Mi is the set of its methods

22

identifiers, andKi is the set of all known rebecs ofr i .

For a Rebeca model, there is a universal setI of all rebec identifiersthat are involved

in the model, and a universal setK of all known rebecsof all members ofI .

A messagemsgis defined as:msg=< sendid, i,mtdid>, wheresendidis the identifier

of the sender,i is the identifier of the receiver, andmtdid denotes the method of receiver

r i which is called when the message is received. For the sake of simplicity, we ignore the

message parameters in our semantics definition.

U is the set of all possible values for all types of variables that can be defined in a

rebec,V i = {v|v : Vi →U} is the set of possible values for variables of rebeci, andVM =S
i∈IC V i .

Each rebec has a queue which can be defined as a finite sequence of messages. We

denote the set of all finite sequences on a given setA asseq(A). The mailbox of a com-

ponent is like a multi-queue consisting of all the queues of its rebecs and including all the

messages that have been sent from internal rebecs and have not yet been received.

Operational semantics of a Rebeca model is defined as a labeled transition systemM =

(S,L,T,s0), and is shown in Figure 2.4.

The state space of the model is

23

• r i is a rebec with the unique identifieri, defined as< Vi ,Mi ,Ki >.

• Vi is the set of state variables of the rebecr i .

• Mi is the set of methods identifiers of the rebecr i .

• Ki is the set of all known rebecs ofr i .

• I is the set of all rebecs identifiers.

• K =
S

i∈I Ki is the set of known rebecs of all rebecs.

• M = ||i∈I r i is the set of rebecs{r i |i ∈ I} concurrently executing, making the closed modelM , and
we haveVM =

S
i∈IVi , MM =

S
i∈I Mi , KM =

S
i∈I Ki .

• msg=< sendid, i,mtdid> is a message sent by the rebecsendidto call the methodmtdid of rebec
i.

• U is the set of all possible values for all types of variables that can be defined in a rebec.

• V i = {v|v : Vi →U} is the set of possible valuations for variables of rebecr i .

• VM ={v|v : VM→U} is the set of possible valuations for variables of modelM .

• QM =∏i∈IM
seq(IM×Mi) is the set of possible states for the inbox of modelM , defined as a multi-

queue. Each queue is defined as a finite sequence of messages corresponding to an internal rebec as
the receiver.

Figure 2.3: Summary of Definitions

n

∏
i=1

(Si×qi), (2.3.1)

where eachSi is a model of the local state of rebecr i consisting of a valuation that maps

each local field variable to a value of the appropriate type; and the inboxqi , anunbounded

buffer that stores all incoming messages (<mir>) for rebecr i in a FIFO manner.

The set of action labelsL is the set of all<mir> calls in the given<model> ; such calls

record the processing of those messages that are part of the target rebec provided message

servers;

A triple (s, l ,s′) ∈ S×L×S is an element of the transition relationT iff

24

Operational semantics of a modelM =||i∈M r i is defined as a labeled transition system(S,L,T,s0)

• S= ∏n
i=1Si ×qi is the set of states whereSi =V i ×Ki . V i is the set of possible values for all the

variables of rebeci, Ki is the set of known rebecs and known methods ofr i ; andqi is the set of
possible states for the message queue.

• L =
S

i∈I I×Mi is the set of labels, that are all possible messages that can be passed around inM,
where∀(x,y,m) ∈ L we havem∈ Kx.

• T ⊆ S×L×S is the set of transition relations on states, where
s1 →l s2 ∈ T, iff s1,s2 ∈ S, andl = (x,y,m) ∈ L is an enabled transition, which means
∃i ∈ I∧q∈Q | l = head(s1.q.i) ,i.e., l is a message on top of the queue and
s2 results froms1 andl as follows:

– The message is popped froms1.q, i.e.,s2.q.y := tail(s1.q.y).

– Transition that is fired by messagel = (x,y,m) causes the methodm of the rebecy to be
executed as an atomic operation, in which:

∗ Execution of ordinary statements inm may change the value of some variables ofy
(s1.v), and

∗ execution of eachsendstatement inm, changes the message queue(s1.q).

∗ execution of eachcreatestatement inm expands the state spaceS dynamically from
∏n

i=1Si ×qi to(
∏ie Sie×qie

)×∏n
i=1Si ×qi whereie is the created rebec.

• s0 = V×Q0 is the initial state of the model. Variables are initialized to their default values according
to their types, andQ0 is defined such that the queue of each rebec with identifieri includes only the
message(i, i, init i). It is obvious thats0 ∈ S.

Figure 2.4: Operational Semantics of a Rebeca Model.

25

• in states there is somei (1≤ i ≤ n) such thatl is the first message in the inboxqi ,

l is of the form< sendid, i,mtdid(vars) >, andsendidis the rebec identifier of the

requester (sender rebec, implicitly known by the receiver),i is the rebec identifier of

r i (receiver rebec), andmtdid is the name of the methodm of r i which is invoked,

together with its parametersvars;

• states′ results from states through the atomic execution of two activities: first, rebec

r i deletes the first messagel from its inboxqi , second, methodm is executed in state

s. The latter may add requests to rebecs’ inboxes , change the local state, and create

new rebecs;

• if new rebecs are created in the invocation ofm, then the state spaceS expands

dynamicallyfrom the one in (2.3.1) to

(
∏
inew

(Sinew×qinew)
)×

n

∏
i=1

(Si×qi), (2.3.2)

whereinew ranges over the new rebecs created within that method invocation ands′

is an element of (2.3.2);

Clearly, the execution of the above methods relies implicitly on a standard semantic for the

26

imperative code in the body of methodm. Within such code,<mir> requests may be is-

sued and rebecs may be created. In our semantics, messages (method invocation requests)

(<mir>) are the sole mechanism for communication between rebecs. Regarding theinfinite

behavior of our semantics, communication is assumed to be fair [6]: all<mir> requests

eventually reach their respective inboxes and will eventually be invoked by the correspond-

ing rebec.

The initial states0 is the one where each rebec has itsinitial message as the sole

element in its inbox.

Example 2 (Producer-Consumer: Initial state) In Example 1, in the initial state there

are a buffer, a producer and a consumer with their initial methods in their inboxes. So,

we have three enabled transitions. Execution of the initial methods may cause sending

messages to others or to self, and/or setting field variables.

In the initial method of the rebec Buffer instance variables are initialized; and in the

initial methods of the rebecs Producer and Consumer messages beginProduce and begin-

Consume are sent to self.

Example 3 (Producer-consumer: state transitions)Here we mention some of state tran-

sitions of the system.

• After execution of theinitial method of the Producer, we have a beginProduce mes-

sage in its inbox. When the beginProduce message in the inbox of Producer is se-

lected to be served, it is popped from the inbox and its code is executed by sending

27

the messages giveMeNextProduce to the Buffer. This message is added to the inbox

of the Buffer.

• Execution of giveMeNextProduce method by the Buffer depends on the state variable

f ull . If the f ull variable is false, it causes sending a Produce message to the Pro-

ducer, if thef ull variable is true the state variableproducerWaitingis changed to

true to show that the Producer is waiting for an empty place to put its product in.

Example 4 (Producer-Consumer: Dynamic creation and topology)Another version of

Producer-Consumer example is shown in Figure 2.5. In this example we show dynamic

creation of rebec Buffer, and dynamic changing topology. Unlike in Example 1, where

there is one instance of rebec Buffer, and a constant number of buffer elements available,

here we allow dynamic creation of instances of rebec Buffer. Each buffer has one buffer

element and a pointer to the next buffer. At the initial state one buffer is created, after

one production the producer makes the buffer element of this buffer full. Then, for the

next product another buffer is created. Buffer rebecs are like the nodes of a link list which

are created on demand. The rebec Consumer starts to consume from the first node and

moves forward in this link list. For the sake of simplicity, we do not model releasing of the

consumed nodes.

As shown in Figure 2.5, if a buffer is full and a Producer asks for a space by send-

ing readyToProduce, then a new buffer is created and its known objects are set to be the

Producer and Consumer. Then, the rebec id of this new rebec is sent to the Producer as

a parameter of the message setBuffer. Execution of the message server of setBuffer will

change the known object of the Producer to the Buffer which is newly created. This is an

example of dynamic changing topology.

28

reactiveclass Buffer(4) {

knownobjects {

 Producer producer;

 Consumer consumer;

 }

statevars {

boolean empty;

boolean consumerWaiting;

 Buffer nextBuffer;

 }

msgsrv initial() {

 empty = true;

 consumerWaiting = false;

 nextBuffer = null;

 }

msgsrv readyToProduce() {

if (!full) {

 producer.produce();

 }

else {

nextBuffer = new Buffer(producer,

consumer):();

 producer.setBuffer(nextBuffer);

 }

 }

msgsrv readyToConsume() {

if (!empty) {

 consumer.consume();

 }

else if (nextBuffer != null) {

 consumer.setBuffer(nextBuffer);

 }

else {

 consumerWaiting = true;

 }

 }

msgsrv ackProduce() {

 empty = false;

if (consumerWaiting) {

 consumer.consume();

 consumerWaiting = false;

 }

 }

msgsrv ackConsume() {

 empty = true;

 }

}

reactiveclass Producer(2) {

knownobjects {

 Buffer buffer;

 }

statevars {

 }

msgsrv initial() {

self.beginProduce();

 }

msgsrv produce() {

 buffer.ackProduce();

self.beginProduce();

 }

msgsrv beginProduce() {

 buffer.readyToProduce();

 }

msgsrv setBuffer(Buffer b) {

 buffer = b;

self.beginProduce();

 }

}

reactiveclass Consumer(2) {

knownobjects {

 Buffer buffer;

 }

statevars {

 }

msgsrv initial() {

self.beginConsume();

 }

msgsrv consume() {

 buffer.ackConsume();

self.beginConsume();

 }

msgsrv beginConsume() {

 buffer.readyToConsume();

 }

msgsrv setBuffer(Buffer b) {

 buffer = b;

self.beginProduce();

 }

}

main {

 Buffer buffer(producer, consumer):();

 Producer producer(buffer):();

 Consumer consumer(buffer):();

}

Figure 2.5: Producer-Consumer Example with Dynamic Behavior

Chapter 3

Compositional Verification in Rebeca

3.1 Introduction

In formal verification we try to prove or disprove that a model satisfies some specifications.

There are two basic approaches to this analysis: model checking and deductive methods.

Typically, model checking is performed by an exhaustive simulation of the model on all

possible inputs. In this case, a software tool performs the analysis. In a deductive method,

the problem is formulated as proving a theorem in a mathematical proof system, and the

modeler attempts to construct the proof of the theorem (usually using a theorem prover as

an aid) [11].

One of the most important problems in model checking is the state-explosion problem.

Compositional verification is a way to tackle this problem. In compositional verification

the goal is to check properties of the components of a system and deduce global properties

29

30

from these local properties. The main difficulty with this approach is that local properties

are often not preserved at the global level [18].

In compositional verification, the specification of a system is decomposed into the prop-

erties of its components which are then verified separately. If we deduce that the system

satisfies each local property, and show that the conjunction of the local properties implies

the overall specification, then we can conclude that the system satisfies this specification

too [36, 17, 44]. There has been a strong trend to use compositional approaches in formal

verification of systems [34, 58, 61, 56]. The closest approach to our work is [51].

An overview In its simplest form assume a system consists of two modulesP and Q

which communicate with each other and also with their environment. We show this system

asP||Q. If ϕP is the specification ofP (P |= ϕP) andϕQ is the specification ofQ (Q |= ϕQ),

we would like to reason according to the following rule [43]:

P |= ϕP

Q |= ϕQ

ϕP∧ϕQ⇒ ϕ

—————

31

P||Q |= ϕ

As mentioned above, the local propertyϕP does not necessarily hold afterP is com-

posed withQ. To use the above rule, the composed system should maintain inherent prop-

erties of its components. In other words composition ofP andQ should not alterϕP and

ϕQ in the whole system.

In addition, a component of a system is typically designed to work only in the environ-

ment of that system. Thus, the moduleP does not necessarily satisfy the useful property

that we need in an arbitrary environment. The reachable state space ofP in any possible

environment may in fact be much larger than the state space ofP composed withQ. This

is calledenvironment problem. Two possible solutions for this problem arecompositional

minimizationandassume/guarantee reasoning. In compositional minimization a reduced

version ofQ, sayQ′, is derived that characterizes just the behavior ofQ that is visible toP.

Q′ is called aninterface processand models a reduced environment. The property ofP||Q′

can also be stated forP||Q. In assume/guarantee reasoning,ϕP is specified and guaranteed

regarding some assumptions about the environment which have to be satisfied byQ.

32

3.2 Model Checking Rebeca Models

For verifying the behavior of a model, we need a language to specify its properties. Tem-

poral logic and automata are alternatively used for this purpose. Here we choose temporal

logic as our property specification language. Model checking can only be applied on finite

systems, so we use abstraction techniques to make our model finite. Unbounded message

queues, unbounded data types, and unbounded creation of rebecs are not allowed. Another

method for reducing the state space is the coarse grained granularity in the interleaving that

models the concurrency of the system. Each method is executed as an atomic operation.

Below, we describe these features in model checking Rebeca models in more detail.

Property specification language We use temporal logic as our property specification

language. Atemporal formulais constructed out ofstate formulas(assertions) to which we

apply boolean connectives and temporal operators. State formulas are propositions defined

over standard operations and relations overV, whereV =
S

i∈I Vi . We naturally do not

consider the message queue contents in our state formulas. So, the properties are based

on state variables of each rebec in the model. For model checking we abstract from the

dynamic rebec creation and dynamic changing topology and consider it as the future work.

33

Bounded queues Finite-state model-checkers are not able to deal with infinite state space,

which is present in Rebeca due to the unboundedness of the inboxes’ capacity. Thus, we

need to impose an abstraction mechanism on our models: each rebec has a user-specified,

finite upper bound on the size of its inbox. The computation of the successor states′ of a

transition(s, l ,s′) is as before, except thats′ equalss (stuttering step) if the requestl did not

reach the filled-up inbox of the target.

Atomic execution of each method As we do not have any explicit receive statement in

Rebeca, and as we do not have any shared variable among rebecs, we can execute with-

out loss of generality a method atomically. More specifically, all generated messages can

be sent at the end of each method execution preserving the order. In general for model-

checking purposes we have to assume for each possible loop in a method a static given

upper bound of its iterations. Consequently a program with such loops can be compiled

into an equivalent program without loops.

A front-end tool for model checking For model checking Rebeca codes we developed

a tool which is explained in Section 5.2. Using this tool we can translate Rebeca codes to

SMV [1] or Promela [4] and model check it by existing model checkers. In these tools,

we have bounded data types, bounded message queues and in the future version a bounded

34

number of rebec creation. Property specification language is based on the specification

languages of back-end model checkers: LTL and CTL. The execution of each method

is accomplished as an atomic operation. Message blocks are not implemented yet. An

ongoing project is developing another tool for generating the state space from Rebeca codes

and then model check it directly.

Example 5 (Producer-consumer: Model checking the code)The producer-consumer Re-

beca model in Figure 2.2 (with static behavior) is translated to SMV using our tool and

then it is model checked using NuSMV. The total state space generated by NuSMV includes

2.14e14states and the reachable state are374states. The safety properties:

2!(bu f f er. f ull ∧bu f f er.empty) and

2(!bu f f er.empty∧!bu f f er. f ull)→
!(bu f f er.nextProduce= bu f f er.nextConsume)

are checked and are both true.

3.3 Compositional Verification in Rebeca: Components

In general, compositional verification may be exploited more effectively when the model

is naturally decomposable [22]. In particular, a model consisting of inherently indepen-

dent modules is suitable for compositional verification. Our actor-based model provides

such independent modules because of the asynchronous communication mechanism which

involve only an explicit non-blocking send operation.

35

Decomposition into components In Rebeca, for verification purposes we maydecom-

posea closed model and think of one part as a component which is an open system and the

remainder as the environment that makes the overall system closed. This de-composition,

determines which rebecs in the model have to be modeled with state and behavior (the

component) and which rebecs may be abstracted such that they onlysendmessages (the

environment).

Modeling environment Since environment rebecs never execute their own methods, there

is no need to model their inboxes, state, or behaviors. In a Rebeca component model, we

call environment rebecsexternaland all other rebecsinternal.

Abstracting environment This de-composition process abstracts the model consider-

ably: only internal rebecs are fully modeled; external rebecs are only modeled in their

capacity to request remote method invocations (sending messages). So, they are only mod-

eled as the set of external messages that can be sent by them. This set of external messages

represent the environment for the component.

Abstracting the queues from external messagesInstead of putting external messages

in an internal’s inbox, they may be processed at any time, up to fair interleaving with the

36

processing of requests in the inbox. This makes the model checking more efficient. For-

mally the behavior of the environment of a component is modeled by additional transitions

which describe its messages sent to the component. In other words with respect to the ex-

ternal environment, a component behaves like an I/O automata [39], where inputs from the

environment are always enabled.

External messages attached to componentsExternal messages coming into the compo-

nent are present in all the states and we can imagine that they are like the members of a set

that is constantly attached to all the states in the corresponding labeled transition system.

In this way we abstract from buffering the external messages, and we do not need to have

a special rebec or component modeling an environment. The environment of each compo-

nent is modeled as extra transitions, added to operational semantics of a component. It is

shown in the definition of the set of transition relations in the labeled transition system of

Figure 3.2.

Abstracting from parameters and dynamic topology For the sake of simplicity, we

abstracted the method definitions from their parameters. Methods with variables which

range over finite data types as parameters, can be modeled as multiple methods with no

parameters. Consequently, assuming a statically given a priori upper bound to the number

37

of created objects we can model a restricted form of dynamic topology.

Dynamic creation of rebecs In the compositional verification approach, the behavior

of internal rebecs of a component is fully modeled without any abstraction. So, dynamic

creation of internal rebecs can be also modeled naturally. By abstracting the environment

we model it with a constant set of external messages. If we assume an environment which

is dynamically changed by creation of new rebecs, then the set of external messages can be

considered as a constant set only if the behavior of internal rebecs does not depend on the

sender of a message. As the set of active classes is a constant, and new rebecs are created

from this constant set of active classes we can still model the environment as a constant set

of external messages.

If in the code of a rebec, there is an explicit reference to the sender of a message then the

behavior of the receiver depends on the sender of the message and our abstraction no more

preserves the original behavior. For the sake of simplicity, in the definition of operational

semantics of a component (Figure 3.2), we do not consider dynamic creation of rebecs (nor

internal and external).

Deciding on how to decompose Internal rebecs constitute the “focus” of a particular

analysis. Determination of such a focus may often be the result of intuition and experience

38

with similar patterns of open systems and depends on the properties which have to be

proved. It is the responsibility of the modeler and cannot be fully automated, although

some work has been done in automating this process and eliminating user guidance [9].

There is no general approach in decomposing the system in components, components have

to be selected carefully to lead to a smaller state space [36]. In many cases, specially when

there is symmetry in the model, we can reduce the state space significantly.

Composing two components With the decomposition technique the universe of rebecs

is always known. The active classes in the closed system designates this set. Given a model

as the universe of rebecs, any (finite) subset thereof can be the set of internal rebecs of some

Rebeca component. Given two such components, we are able to compose them into another

component. The resulting component is the union of internal rebecs of the constituents.

Internal and external messages can be obtained knowing the universe of rebecs and internal

rebecs. Note that decomposing a given close model is different from composing open

components which are defined in an unknown environment.

The definitions for components are formalized in Figure 3.1 and operational semantics

of a componentC is summarized in Figure 3.2 [53].

Example 6 (A component in a Rebeca model)In our producer-consumer example with

no dynamic behavior (Figure 2.2), we can take rebecsbu f f er and produceras an open

39

• C = ||i∈ICr i is a set of rebecs{r i |i ∈ IC} concurrently executing, and we haveVC =
S

i∈IC Vi , MC =S
i∈IC Mi , KC =

S
i∈IC Ki .

• IC ⊆ I is the set of identifiers of internal rebecs ofC.

• C = ||ni=1Ci is the parallel composition ofn componentsCi , i = 1, ...,n, and we haveIC =
Sn

i=1 ICi ,
VC =

Sn
i=1VCi , MC =

Sn
i=1MCi , KC =

Sn
i=1KCi .

• VC ={v|v : VC →U} is the set of possible valuations for variables of componentC.

• QC = ∏i∈IC seq(IC×Mi) is the set of possible states for the inbox of componentC, defined as a
multi-queue. Each queue is defined as a finite sequence of messages corresponding to an internal
rebec as the receiver.

Figure 3.1: Summary of Definitions for Components

Operational semantics of a componentC = ||i∈ICr i is defined as a labeled transition system(SC,LC,TC,sC0)

• SC = ∏n
i=1Si ×qi is the set of component states whereSi =V i ×Ki . V i is the set of possible values

for all the variables of rebeci, Ki is the set of known rebecs and known methods ofr i ; andqi is the
set of possible states for the message queue.

• LC =
S

i∈IC I×Mi is the set of labels, that are all possible messages toC, where∀(x,y,m) ∈ LC we
havem∈ Kx.

• TC ⊆ SC×LC×SC is the set of transition relations on states, where
s1 →l s2 ∈ TC, iff s1,s2 ∈ SC, andl = (x,y,m) ∈ LC is an enabled transition, which means
∃i ∈ IC∧qC ∈ QC | l = head(s1.qC.i) ,i.e., l is an internal message on top of the queue orl .x /∈ IC ,
i.e., l is an external message; and
s2 results froms1 andl as follows:

– If x∈ IC then the message is popped froms1.qC, i.e.,s2.qC.y := tail(s1.qC.y), otherwises1.qC

does not change.

– Transition that is fired by messagel = (x,y,m) causes the methodm of the rebecy to be
executed as an atomic operation, in which:

∗ Execution of ordinary statements inm may change the value of some variables ofy
(s1.vc), and

∗ execution of eachsendstatement inm,
if it is a send to an internal rebec, changes the message queue(s1.qC),
otherwise it has no effect on the state.

• sC0 = VC×QC0 is the initial state of the component. Variables are initialized to their default values
according to their types, andQC0 is defined such that the queue of each rebec with identifieri
includes only the message(i, i, init i). It is obvious thatsC0 ∈ SC.

Figure 3.2: Operational Semantics of a Component.

40

component, and the consumer as environment. This component can be denoted bybu f f er||
producer. The external messages coming to the component are ackConsume and giveMeNextCon-

sume messages from the consumer to the buffer. We assume these messages are always

enabled.

Example 7 (Composition of components in a Rebeca model)If we compose two com-

ponentsbu f f er||producerandbu f f er||consumer, we will havebu f f er||producer||
consumer. It is the union of internal rebecs which made a closed system here. Internal and

external messages can be obtained knowing the universe of rebecs and internal rebecs.

3.4 Formal Justifications

The state explosion problem may be avoided by using techniques that replace a large com-

ponent by a smaller component which satisfies the same properties. We need a notion of

equivalence or preorder among structures guaranteeing that two components satisfy the

same set of formulas in a given logic or that certain properties are preserved.

A simulation relates a component to an abstraction of that component. Because the

abstraction can hide some of the details of the original structure, it might have a smaller set

of state variables. The simulation guarantees that every observable behavior of a component

is also a behavior of its abstraction. However, the abstraction might have behaviors that are

not possible in the original component.

41

Weak simulation and property preservation Now, we explain the weak simulation re-

lation among components in our model. Here, the model is simplified by ignoring dynamic

creation and dynamic topology. Therefore, referring to the operational semantics of mod-

els in Section 2.3, the state spaceS won’t expand dynamically from formula (2.3.1) to

formula (2.3.2).

As explained before, external messages coming into the component are present in all

the states and we can imagine that they are like the members of a set that is constantly

attached to all the states in the corresponding labeled transition system. So, in each state,

we have a set of variables, a message (multi-)queue, and also a set of external messages.

Because the set of external messages is constant in all states, we do not need to consider it

in each state.

To define the weak simulation relation between two components, we use the operational

semantics definition in Section 2.3 and the component definition in this section, and the

following notation. A componentC is a set of rebecs, the set of identifiers of internal

rebecs ofC is denoted byIC and its state bysC. The set of valuations for variables of

componentC in statesC is denoted bysC.VC. The inbox of componentC is defined as a

multi-queue, each queue is defined as a finite sequence of messages corresponding to an

internal rebec as the receiver. The multi-queue of componentC in statesC is denoted by

42

sC.qC. As explained in Section 2.3, a label is a message of the form< sendid, i,mtdid>,

wheresendidis the identifier of the sender rebec,i is the identifier of the receiver rebec,

andmtdiddesignates the method ofi to be executed.

We also define a projection relation between two states. StatesC′ is a projection of state

sC (denoted bysC′ ↑ sC), if (1) IC′ ⊆ IC; (2) the variables of their common rebecs have the

same values, i.e.,sC′.V C′ ⊆ sC.VC; and (3) the multi-queuesC.qC′ is a projection ofsC.qC.

The multi-queueqC′ is a projection of the multi-queueqC (denoted byqC′ ↑ qC), if

IC′ ⊆ IC and for eachi ∈ IC′ the sequence of messages< sendid, i,mtdid> in qC, ignoring

messages withsendid∈ IC− IC′, is the same as the sequence of messages inqC′ .

With this terminology, we now define the weak simulation relation.

Definition 1. (Weak simulation)Given two componentsC andC′ of a given model, rep-

resented by labeled transition systems(SC,TC,s0C) with signature of action labelsLC and

(SC′,TC′,s0C′) with signature of action labelsLC′, such thatIC′ ⊆ IC:

1. A relationH ⊆ SC×SC′ is a weak simulation relation betweenC andC′ if and only

if for all sC ∈ SC,sC′ ∈ SC′ , if H(sC,sC′), then the following conditions hold:

(a) sC′ ↑ sC.

(b) for every statesC1 and labell ∈ LC such that(sC, l ,sC1) ∈ TC, there is a statesC′1

43

with the property thatsC′1 = sC′ (if l /∈ LC′) or (sC′, l ,sC′1) ∈ TC′ (if l ∈ LC′) and

H(sC1,sC′1).

2. We say thatC′ weakly simulatesC (denoted byC≤C′) if there exists a weak simu-

lation relationH betweenC andC′ such thatH(sC0,sC′0).

Next we introduce a theory which provides a formal justification of our compositional

verification technique of a component-based model. This theory consists of two theorems,

one theorem which semantically characterizes the behavior of a component in the context

of a given closed model in terms of the above weak simulation relation, and a general

theorem which provides the semantic characterization of the logic in terms of the weak

simulation relation.

Theorem 1. (Weak simulation relation between a component and its composition with

another arbitrary component)For any two componentsC′ andX of a model (defined on

the same universal set of rebecs),C′ weakly simulatesC = C′||X.

proof. ConsiderH = {(sC,sC′) ∈ SC×SC′ | sC′ ↑ sC}. We have to show (1) thatH is a weak

simulation and (2)H(sC0,sC′0).

1. To show thatH is a weak simulation:

44

(a) sC′ ↑ sC is in the definition ofH.

(b) For the second condition, letH(sC,sC′) andl ∈ LC such that(sC, l ,sC1) ∈ TC.

i. If l /∈LC′ thensC′ stays unchanged, i.e.,sC′1 = sC′ and we still haveH(sC1,sC′1).

But l /∈ LC′ means thatl is a message to rebecs in the componentX, i.e.,

l = (p, r,m), r ∈ IX, r /∈ IC′. In this casemwill be executed and so the vari-

ables ofC′ (VC′) remain unchanged, and also messages that may be sent by

mare not put into the multi-queue ofC′. Thus,qC′ won’t be changed either

and thereforeH(sC1,sC′1).

ii. If l ∈ LC′, it means thatr ∈ IC′, whenl = (p, r,m). We have to show thatl

is enabled insC′, and then also show thatsC′1 ↑ sC1. First, we show thatl is

enabled insC′ in all the possible conditions:

• l is external for bothC andC′. We know thatIC′ ⊆ IC, soI ′C ⊆ I ′C′ and

the set of external messages toC is a subset of external messages toC′.

Thus,l is enabled insC′ .

• l is internal forC and external forC′. It means thatl is a message

coming from a rebec inX, e.g.,p∈ X. Whenl is an external message

for C′, it is always enabled in all states, so it is enabled insC′.

• l is internal for bothC andC′. We know thatH(sC,sC′), sosC′ ↑ sC and

45

alsoqC′ ↑ qC. From the definition of projection we know that ifl is on

the top of the queue insC, it has to be on the top of the queue forsC′

too. Thus,l is enabled insC′.

Second, we prove thatsC′1 ↑ sC1 is the same for all three cases.

• execution ofm causes the same changes on variables of both compo-

nents (just the variables inr); and

• it may send some messages to rebecs inC′, causing the same changes

in both queues ofsC and sC′; or it may send messages to rebecs in

X, makingsC′1.qC′ to be different fromsC1.qC but still guaranteeing

qC′ ↑ qC and sosC′1 ↑ sC1.

2. Now we show thatsC′0 ↑ sC0. This follows from the definition of the initial state in

the operational semantics of components:sC′0.V C′ ⊆ sC0.VC; furthermore,sC′0.qC′ ↑

sC0.qC, because there are only init messages in both of them.

Definition 2. (Satisfaction relation)A computation of a componentC is a maximal exe-

cution path beginning at the initial state. Given an LTL formulaφ, we say thatC |= φ iff φ

holds for all computations ofC.

46

We have the following theorem which restricts the corresponding theorem of Clark et

al [17] to safety properties.

Theorem 2. (Property preservation)If C′ weakly simulatesC, then for every safety prop-

erty specified by an LTL-X formulaφ (LTL without the next operator), with atomic propo-

sitions on variables inC′, C′ |= φ impliesC |= φ.

Compositional verification Using Theorem 2 we have the following corollary for com-

positional verification of LTL-X safety properties.R= ||ni=1Xi is the parallel composition

of n componentsXi , i = 1, ...,n and we haveIR =
Sn

i=1 IXi .

Corollary 1. (Compositional verification)Let R= ||ni=1Xi andϕXi be a safety property of

Xi specified in LTL-X. In order to show thatϕR is a property of systemR, it suffices to find

properties for eachXi , such that,

1. For i = 1, . . . ,n, ϕXi is a property ofXi , and

2. (
Vn

i=1ϕXi)⇒ ϕR is valid.

We can prove fori = 1, . . . ,n , Xi |= ϕXi by model checking. After that if(
Vn

i=1ϕXi)⇒ ϕR

thenϕR is a property ofR.

47

There are no conditions on selected components. But, obviously it is better to put

highly interacting rebecs in a component. It would also be better to select loosely coupled

components for model checking in order to decrease the number of external messages.

Sometimes, we need to share some rebecs between some components. Theorem 2 holds in

this situation too. Hence, we can use Corollary 1.

Sometimes a system consists of similar components in which case we can use a kind of

generalization. We say two components are similar when they consist of the same number

of rebecs and for each rebec in one there is a corresponding rebec in the other component,

and both rebecs are instantiated from the same class. Since all instances of a class have sim-

ilar properties, so have all similar components. The modeler chooses a component which

its parallel composition with a number of other similar ones makes up the total system.

S/he verifies the property of this component by model checking and it is generalized to

other similar ones. Then, the rest is done by using Corollary 1.

Example 8 (Producer-consumer: verification of a property using abstraction)The crit-

ical section in producer/consumer example is the buffer which is a shared object. The sys-

tem safety requirement is that at any given time the producer and consumer do not access

the buffer simultaneously. It is specified in LTL-X as follows:

ϕsys= 2(!bu f f erManager.empty∧!bu f f erManager. f ull)→

48

!(bu f f erManager.nextProduce= bu f f erManager.nextConsume)

Here, the property of the system is localized to a property of one rebec: thebu f f erManager.

So, we can pick thebu f f erManageras the component and the rest of the system as its

environment. The desired property is proven by model checking and shows that the sys-

tem satisfies its safety requirement. The reachable states generated by NuSMV in model

checking this example, consisting of one producer and two consumers is6936. Using our

compositional verification approach and assuming thebu f f erManageras a component

the reachable states will reduce to2562. By increasing the number of consumers to four

we have817 million reachable states for the closed world model and17,930 reachable

states using compositional verification approach.

In Example 8, we only use Theorem 1 and Theorem 2 to prove the property of the

system by model checking a component. The following example shows how we need to

use also Corollary 1 in order to prove the desired property.

3.5 An Example: Dining Philosophers

We use Rebeca to model the dining philosophers example. This system is discussed in

various texts [29, 49, 33] and can serve as a simple example for showing how to use our

method.

49

A Rebeca model There aren philosophers at a round table. To the left of each philoso-

pher there is a fork, but s/he needs two forks to eat. Of course only one philosopher can

use a fork at a time. If the other philosopher wants it, s/he just has to wait until the fork

is available again. Figure 3.3 shows a solution for the dining philosophers problem, with

n = 4, coded in Rebeca.

The system consists of aPhilosopherclass that is a template for defining philosophers

and aFork class that is a template for forks (see Figure 3.3). Our model consists of four

philosophers and four forks. The known rebecs of each philosopher are its left and right

forks, and known rebecs of each fork are its left and right philosophers.

Some state transitions

• In the dining philosophers example, in the initial state there are four philosophers

and four forks with theirinit methods in their inboxes. So, we have eight enabled

transitions. Execution of theinit methods may cause sending messages to others or

to self, and/or setting field variables.

• After execution of theinit method ofPhils2, we have anArrive message in its inbox.

When theArrivemessage in inbox ofPhils2 is selected to be served, it is popped from

inbox2 and its code is executed by sending three messages, aRequestto Forks2, a

50

class Philosopher:(Forkl,Forkr:Fork) { class Fork:(Phill,Philr:Philosopher) {
interface: interface:

Permit(); Request();
Release();

body: body:
boolean eating; boolean busy;
boolean FL, FR; boolean requester;

Arrive() { Request() {
send (Forkl, Request()); if (sender <> self) {
send (Forkr, Request()); if (sender == Phill) requester = true;
send (self, Eat()); } else requester = false;

} if (busy) {
Permit() { send(self,Request());

if (sender == Forkl) } else {
FL = true; busy = true;

else if (requester) send (Phill,Permit());
FR = true; else send (Philr,Permit());

} }
Eat() { }

if (FL && FR) { Release() {
eating = true; busy = false;
send (self, Leave()); }

} else {
send (self, Eat()); init() {

} busy = false;
} }
Leave() { }

FL = false; rebecs:
FR = false; Phils0:Philosopher(Forks0,Forks1);
eating = false; Phils1:Philosopher(Forks1,Forks2);
send (Forkl,Release()); Phils2:Philosopher(Forks2,Forks3);
send (Forkr,Release()); Phils3:Philosopher(Forks3,Forks0);
send (self, Arrive()); Forks0:Fork(Phil0,Phil3);

} Forks1:Fork(Phil1,Phil0);
init() { Forks2:Fork(Phil2,Phil1);

FL = false; Forks3:Fork(Phil3,Phil2);
FR = false;
eating = false;
send (self, Arrive()); model = || (Phils0, Phils1, Phils2, Phils3,

} Forks0, Forks1, Forks2, Forks3);
}

Figure 3.3: Dining Philosophers Example

51

Requestto Forks3, and anEat to itself. Thesemethod invocation requestsare added

to corresponding inboxes.

A component in a Rebeca model In our dining philosophers example we can take rebecs

Phils0, Forks1 andPhils1 as an open component, and other rebecs as the environment.

This component can be denoted byPhils0|| Forks1|| Phils1. The only external messages

coming to the component arePermit messages fromForks0 to Phils0 and fromForks2 to

Phils1. We assume these messages are always enabled.

Composition of components in a Rebeca model If we compose two componentsPhils0||

Forks1||Phils1andPhils1||Forks2||Phils2, we will havePhils0||Forks1||Phils1||Forks2||Phils2.

It is the union of internal rebecs. Internal and external messages can be obtained knowing

the universe of rebecs and internal rebecs.

Compositional verification of mutual exclusion property The system safety require-

ment is that at any given time two neighboring philosophers cannot both hold the fork

between them. It is specified in LTL-X as follows (⊕ denotes addition in modn, andn is 4

in our example):

52

ϕsys= 2(
Vn−1

i=0 ¬(Philsi .FR∧Philsi⊕1.FL))

According to the above property as the system property to be proved, we decide how to

decompose the system. We want to deduce the system property,ϕsys, from the properties

of the components. So, we considerPhils0||Phils1||Forks1 as a component and prove the

following property by model checking:

ϕPhils0||Forks1||Phils1 = 2(¬(Phils0.FR∧Phils1.FL))

This property is proven by model checking using our tool. The tool can automatically

generate the abstract model of the component out of the closed model and then translate it

to SMV. The SMV code is then model checked by NuSMV model checker. Considering

four similar componentsPhilsi ||Forksi⊕1||Philsi⊕1, i = 0, ...,4 (with a shared philosopher

between each pair of overlapping components), we have:

ϕPhilsi ||Forksi⊕1||Philsi⊕1
= 2(¬(Philsi .FR∧Philsi⊕1.FL))

and then using deduction we can easily prove that:

53

Vn−1
i=0 ϕPhilsi ||Forksi⊕1||Philsi⊕1

⇒ ϕsys

By Corollary 1, in order to show thatϕsys is a property ofsys, it suffices to find valid

properties for each component such that conjunction of these properties yields toϕsys.

Thus, by what we showed above, we can conclude thatϕsys is a property ofsys.

Using deduction to prove the mutual exclusion property In this example it is obvious

that the following formula holds:

2(¬(Phils0.FR∧Phils1.FL)∧2(¬(Phils1.FR∧Phils2.FL)∧

2(¬(Phils2.FR∧Phils3.FL)∧2(¬(Phils3.FR∧Phils0.FL))⇒

2(¬(Phils0.FR∧Phils1.FL)∧¬(Phils1.FR∧Phils2.FL)∧

¬(Phils2.FR∧Phils3.FL)∧¬(Phils3.FR∧Phils0.FL))

This will satisfy condition 2 of Corollary 1. In this case, proving this formula is an easy

deduction in linear temporal logic. But for proving more complicated formulas, automated

theorem provers can be used.

Chapter 4

Extended Rebeca

4.1 Introduction

A model in Rebeca consists of a set ofrebecs 1 which are concurrently executed. Rebecs

are encapsulated active objects, with no shared variables. Each rebec is instantiated from

a classand has a single thread of execution which is triggered by reading messages from

an unbounded queue. Each message specifies a unique method to be invoked when the

message is serviced. When a message is read from the queue, its method is invoked and

the message is deleted from the queue. Note that reading messages, thus, drives the com-

putation of a rebec. Rebecs do not provide an explicit control over the message queue.

In kernel Rebeca (before extension), active objects communicate only via asynchronous

message passing. Because of this asynchronous communication mechanism, with only an

asynchronous send operation and no explicit receive operation, methods can be executed

1reactive object

54

55

atomically. Dynamic changing topology and dynamic rebec creation is defined in formal

semantics of Rebeca.

We exploited the specific features of this actor-based model of computation in a com-

positional verification technique for model-checking safety properties [56]. In this chapter,

we enrich the actor-based model of computation with a formal concept of components.

Components encapsulate their internal structure which is given by a set of rebecs. The

methods of these rebecs however provide an additional communication mechanism based

on synchronous message-passing. The interaction between the rebecs of a component is

encapsulated. The concept of components in this chapter shouldn’t be confused by what we

introduced in Chapter 3. Here, components are no more sub-models which are the result of

decomposing a closed model in order to apply compositional verification. Components in

this chapter, present independent modules with well-defined interfaces which can be used

in modeling as well as verification.

The motivation is to provide a general framework which integrates in a formally con-

sistent manner, both synchrony and asynchrony. We introduce components for integrating

different communication patterns (synchronous and asynchronous), at different levels of

abstraction. At the highest level of abstraction, components only interact asynchronously

56

via broadcasting anonymous messages. At a lower level of abstraction (within a compo-

nent), computations, on the one hand are driven by asynchronous messages, and on the

other hand can be synchronized by a handshaking communication mechanism.

The external observable behavior of a component is described by an interface. This

interface specifies a set of provided and required message signatures which is the union of

provided and required messages of internal rebecs. These signatures specify the message

name and the types of its parameters. In order to enforce encapsulation, we do not allow

a rebec class as a parameter-type. A rebec of a component can only send instances of the

required message signatures. These messages will be broadcasted to all the other compo-

nents of the system. On the other hand, upon receiving a message from environment, a

component will broadcast the instances of the provided massage signatures to all internal

rebecs. Each internal rebec of the component will store these provided messages in its

message queue, only if the service is offered by it.

4.2 Syntax

Rebeca is a class-based language in which classes are templates for instantiating rebecs

with specified interfaces, instance variables, and method definitions. Variables are strongly

typed. In order to increase the modeling power of actor-based languages, we extend the

57

asynchronous communication mechanism of Rebeca with synchronous message passing

and a mechanism for broadcasting anonymous messages. Synchronous messages are spec-

ified only as a signature specifying the name of the message and the types of its parameters.

For sending a synchronous or asynchronous message to an internal rebec, we specify

its name. An anonymous send statement represents a broadcast to other components. In

order to introduce the extended version of Rebeca we need the following definition.

Definition 1 (Basic definitions) .

• The predefined typesT: Int for integers,Bool for Booleans, andRebfor rebec names,

i.e., identities of the active object in Rebeca.

• The setVar is the set of variables of typeT with typical elementsx1,x2, . . . ,xn,

including instance variables and also local variables. We show local variables by

u1, . . . ,un, values byv1, . . . ,vn, and rebec names byr, r ′,

• The setVal is the union of all the values for all the types, i.e., all the values for type

Int, {True,False} for typeBool, and all the rebec names for typeReb.

• The setMesis the set of messages with typical elementsm,m1, . . . ,mn.

A model in rebeca is a number of class definitions followed by rebecs instantiated from

them. Components are declared as sets of rebecs. Each class, consists of an interface,

58

declaration of instance variables and its body which is a set of method definitions. The

following describes the syntax of the basic actions, and the methods in Rebeca. In the fol-

lowing definition,a shows the basic actions, andA stands for a name of a class (sometimes

refer to as rebec template).S is the body of a method that includes local variable declara-

tions and a sequential statement composed of the basic actions. A method definition,mtd,

consists of a method signature and method body (S).

Definition 2 (Syntax of extended Rebeca).

The basic actions, and the methods in Rebeca are defined by the following BNF-grammar

(we abstract from the syntax of expressionsei , and brackets ([]) show the optional parts).

a ::= x = e | x = new(A) | [x.]m(e1, ...,en) | receive(m1, ...,mn)

S::= a;S | a

mtd ::= m(u1 : t1, . . . ,un : tn)[: S]

An assignmentstatement,x = e, assigns the value resulting from the evaluation of the

expressione to variablex. A createstatementx = new(A), creates a new rebec as an

instance of classA and assigns its unique identity to the variablex. A classA, is a template

that rebecs are instantiated from.

A sendstatement, can be sending a message to a rebec, specifying its name; or it can be

59

an anonymous send. An anonymoussendstatementm(e1, ...,en), which does not indicate

the name of the receiver, causes an asynchronous broadcast of the messagem with actual

parameterse1 to en. This broadcast in fact will involve all the components of the system

as described in the following section on components. In the lower level, this in turn, will

cause sending an asynchronous message to all the rebecs of a component.

Execution of asendstatement,r.m(e1, ...,en), consists of sending a messagem with

actual parameterse1 to en to the rebecr. Message passing can be both synchronous as

well as asynchronous. Asynchronous messages define a corresponding message-handler

S, also called a method, and there is no explicit receive statement for them. An asynchro-

nous message will be stored in unbounded message queue of the callee, after which the

caller proceeds with its own computation. When this message is read by the callee the

corresponding statement is executed.

Synchronous messages are specified only in terms of their signature, they do not spec-

ify a corresponding handlerS. Synchronous message passing involves a ‘hand-shake’ be-

tween the execution of a send-statement by the caller and a receive statement by the callee

in which the (synchronous) message name specified by the caller is included. Areceive

statement,receive(m1, ...,mn), denotes a nondeterministic choice between receiving mes-

sagesm1 to mn. This kind of synchronous message passing is a two-way blocking, one-way

60

addressing, and one-way data passing communication. It means that both sender and re-

ceiver should wait at the rendezvous point, only sender specifies the name of the receiver,

and data is passed from sender to receiver.

The body of each method,S, is a sequential statement composed of the basic actions.

A method definition, mtd, defined asm(u1 : t1, . . . ,un : tn) : [S], denotes the method that

is correspondent to messagem with virtual parameteru1 to un of type t1 to tn, and the

body S. The definition of method bodyS is optional, and we have the convention that

m(u1 : t1, . . . ,un : tn) : Scorresponds to an asynchronous message, andm(u1 : t1, . . . ,un : tn)

corresponds to a synchronous message.

4.3 Semantics of Rebecs

We will define the semantics of extended Rebeca in terms of a labeled transition system.

Semantics is defined in a structured manner which reflects the hierarchy of rebecs,

component and component system: First we introduce a labelled transition system which

describes the behavior of a rebec in isolation. This transition system forms the basis for a

labelled transition system which describes the behavior of a component as a set of rebecs.

Finally, the latter system is used as a basis for describing the overall behavior of a system

of components

61

Definition 3 (Local configuration)

Assuming a model with rebec template definitions:A1 = B1, . . . ,An = Bn, whereBi is the

body of the class, rebecs are instantiated from these templates. A local configurationl for

a rebec is defined as a tuplel =< r,σ,S,q > where

• r denotes the rebec identity,

• σ ∈Var→Val assigns values to the variables of the rebec,

• S is the statement to be executed next, and

• q denotes the unbounded FIFO queue containing asynchronous messages.

Next, we introduce a labelled transition relation which describes the behavior of a rebec in

isolation. The labels indicate the nature of the transition:

• the labelτ indicates an internal computation step;

• a labelm(v1, . . . ,vn) indicates that the asynchronous messagem(v1, . . . ,vn) has been

broadcasted;

• a labelr.m(v1, . . . ,vn) indicates that the asynchronous or synchronous messagem(v1, . . . ,vn)

has been sent to the rebecr (which is required to be different from the executing re-

bec);

62

• a labelr.m(v1, . . . ,vn), wherer denotes the executing rebec itself, indicates the recep-

tion of the messagem(v1, . . . ,vn).

For notational convenience, the parameters of a message are dropped in the following de-

finitions when it does not cause loss of information, i.e.,m(v1, . . . ,vn) is shown simply by

m.

Definition 4 (Local transition for processing message queue)

When the point of control is at the end of a method, its execution is finished which is

denoted bynil . If there is a message at the top of the rebec’s queue it is popped and the

corresponding method is called for execution. The parameter values are substituted before

execution. It is worthwhile to observe here that we don’t have recursion in methods so we

don’t need to worry about fresh local variables. The above is formalized by the following

transition:〈r,σ,nil ,q.m(v1, . . . ,vn)〉 τ→ 〈r,σ′,S,q〉

where, given the method definitionm(u1 : t1, . . . ,un : tn) : S, σ′ = σ{v1/u1, . . . , vn/un}

denotes the state resulting from assigning the valuesv1, . . . ,vn to the formal parameters

u1, . . . ,un. Note thatσ{v/u} denotes the result of assigning the valuev to u in the stateσ.

63

Definition 5 (Local transition for assignment)

When the next statement to be executed is an assignment we have the following transition

rule:

〈r,σ,x = e;S,q〉 τ→ 〈r,σ′,S,q〉,

whereσ′ = σ{σ(e)/x} andσ(e) denotes the value of expressione in σ.

Definition 6 (Local transitions for send)

When the next statement to be executed is a send statement we distinguish between broad-

cast, sending to self, and sending to others :

• 〈r,σ,m(e1, . . . ,en);S,q〉 m(v̄)−→ 〈r,σ,S,q〉

wherev̄ = (v1, . . . ,vn), andvi = σ(ei).

• 〈r,σ,x.m(e1, . . . ,en);S,q〉 r ′.m(v̄)−→ 〈r,σ,S,q〉

whereσ(x) = r ′, r 6= r ′, v̄ = (v1, . . . ,vn), andvi = σ(ei).

• 〈r,σ,x.m(e1, . . . ,en);S,q〉 τ−→ 〈r,σ,S,q.m(v1, . . . ,vn)〉

whereσ(x) = r, andvi = σ(ei).

The first case above describes the anonymous broadcast of an asynchronous message.

The second case describes sending a synchronous or asynchronous message to another

64

rebec. Finally, the last case describes sending of an asynchronous message to the rebec

itself. Note that we do not allow sending synchronous messages to self, which will cause

deadlock.

Definition 7 (Local transitions for receive)

We distinguish between the reception of synchronous and asynchronous messages:

• The following transition describes the reception of an asynchronous message for

which the receiving rebec has a corresponding server:

〈r,σ,S,q〉 r.m−→ 〈r,σ,S,q.m〉

• Asynchronous messages for which the receiving rebec does not have a corresponding

receiver are simply discarded:

〈r,σ,S,q〉 r.m−→ 〈r,σ,S,q〉

• Finally, we have the following transition which described the reception of a synchro-

nous message:

〈r,σ, receive(m1, . . . ,mn);S,q〉 r.m(v̄)−→ 〈r,σ′,S,q〉

65

where, given the method definitionm(u1, . . . ,un) andv̄ = (v1, . . . ,vn),

σ′ = σ{v1/u1, . . . ,vn/un}.

Definition 8 (Local transition for creation)

When the next statement to be executed is a creation statement we have the following

transition:

〈r,σ,x = new(A);S,q〉 r ′→ 〈r,σ′,S,q〉 whereσ′ = σ{r ′/x}. Herer ′ is chosen arbitrarily.

Freshness ofr ′ is ensured in the context of a component (described in the next section).

4.4 Components

A component encapsulates its internal structure which is given by a set of rebecs.

Definition 9 (Component configuration)

A component is a non-empty, finite set of rebecs and a component configuration is shown

asC = {l1, . . . , ln} wherel i denotes the local configuration of rebecr i .

Components interact only by broadcasting anonymous messages. The set of public

methods of the rebecs inside a component define its (provided) interface. A message re-

ceived by a component is broadcasted to all its internal rebecs. We formalize the externally

observable behavior of a component by means of a transition relation with labels!mand?m

66

which indicate sending and receiving anonymous asynchronous messagem, respectively.

Communications between rebecs of a component are hidden.

Definition 10 (Component transition for internal communication)

The following transition describes internal synchronous and asynchronous message pass-

ing,

l i
r j .m→ l ′i , l j

r j .m→ l ′j , i 6= j

{l1,...,l i ,...,l j ,...,ln} τ→{l1,...,l ′j ,...,l ′j ,...,ln}

Note that this rule describes sending a synchronous or an asynchronous message fromr i to

r j (i 6= j).

Definition 11 (Component transition for send)

The following rule describes broadcast of an anonymous asynchronous message generated

by an internal rebec.

l i
m→l ′i

{l1,...,l i ,...,ln}!m→{l1,...,l ′i ,...,ln}

Definition 12 (Component transition for receive)

67

The following rule describes the internal broadcast of a received anonymous (asynchro-

nous) message.

l i
ri .m→ l ′i , f or all i∈{1,...,n}

{l1,...,l i ...,ln}?m→{l ′1,...,l ′i ...,l ′n}

Definition 13 (Component transition for creation)

The following rule describes the creation of an internal rebec.

l i
rn+1→ l ′i

{l1,...,l i ,...,ln} τ→{l1,...,l ′i ,...,ln,ln+1}
whereln+1 denotes the initial local configuration of the newly created rebecrn+1 which is

required not to exist in{l1, . . . , l i , . . . , ln}, i.e.,rn+1 6= r i , i ∈ {1, . . . ,n}.

Definition 14 (Component internal transition)

Finally, the following rule describes the internal interleaving execution of rebecs within a

component.

l i
τ→l ′i

{l1,...,l i ,...,ln} τ→{l1,...,l ′i ,...,ln}

A global model simply consists of a set of components.

68

Definition 15 (Global configuration)

A global configuration is a finite set of component configurations{C1, . . . ,Cn}.

Next we define the global transition system which describes the behavior of a set of

components as a closed system.

Definition 16 (Global transition for communication)

This transition describes the broadcasting mechanism of asynchronous anonymous mes-

sages.

Ci
!m→C′i , Cj

?m→C′j , i 6= j

{C1,...,Ci ,...,Cj ,...,Cn} τ→{C′1,...,C′i ,...,C′j ,...,C′n}
Note that an anonymous asynchronous message is broadcasted to all the other compo-

nents.

Definition 17 (Global internal transition)

All the other transitions of components are as internal computation steps in the global

configuration.

Ci
τ→C′i

{C1,...,Ci ,...,Cn} τ→{C1,...,C
′
i ,...,Cn}

69

4.5 An Example: Bridge Controller

Here, we explain a simple example to show our modeling approach. Consider a bridge

with a one-way track where only one train can pass at a time. This example can be easily

extended to multiple tracks. Trains enter the bridge from its left side, pass it, and exit from

the right side. Rebeca code for this example is shown in Figure 4.1. We model the two

ends of the bridge by two objects controlling these ends. These objects are described by

the classesleftControllerandrightController. The rebecstheLeftCtrlandtheRightCtrlare

instantiated from these two classes and together form a component. Trains are modeled

by theTrain class. Many trains can be instantiated from this class, but in this example we

only have two trains instantiated. Each single train instance is modeled as a component.

Trains announce their arrival by broadcasting the anonymous messageArrive(MyTrainNr)

to the Controller component. To this message only theleftController will react by broad-

casting theYouMayPass(MyTrainNr)message after which theleftController waits for the

synchronous message passed. The messageYouMayPass(MyTrainNr)will be received by

both trains, however only the train identified byMyTrainNr will enter the bridge (after

the test the other train will remove the message from its queue and wait for the next mes-

sage), Passing the bridge is modeled by broadcasting the messageLeaveto the Controller

component. To this message only therightControllerwill react by sending the synchronous

70

activeclass leftController() { activeclass Train(){
knownobjects { rightController right; } knownobjects {}
provided { Arrive; } provided { YouMayPass; }
required { YouMayPass; } required { Arrive; Leave; }
statevars { int trainsin; } statevars { boolean OnTheBridge; }
msgsrv initial() { msgsrv initial(int MyTrainNr) {

trainsin = 0; self.ReachBridge();
} OnTheBridge = false;
msgsrv Arrive (int TrainNr) { }

YouMayPass(TrainNr); msgsrv YouMayPass(int TrainNr) {
trainsin = trainsin + 1; if (TrainNr == MyTrainNr) {
receive(passed); self.GoOnTheBridge();

} OnTheBridge = true;
} }

}
msgsrv GoOnTheBridge() {

Leave();
OnTheBridge = false;
self.ReachBridge();

activeclass rightController() { }
knownobjects { leftController left; } msgsrv ReachBridge() {
provide { Leave; } Arrive(MyTrainNr);
request {} }
statevars { int trainsout; } }
msgsrv initial() {

trainsout = 0; main {
} Train train1(1);
msgsrv Leave() { Train train2(2);

trainsout = trainsout + 1; leftController theLeftCtrl(theRightCtrl);
left.passed(); rightController theRightCtrl(theLeftCtrl);

} Components:
} {train1};
{train2};

{theLeftCtrl, theRightCtrl};
}

Figure 4.1: Bridge Controller Example, Modeled in Extended Rebeca

message passed to theleftControllerwhich enables theleftControllerto receive newArrive

messages. Note that thus no trains are allowed to enter the bridge (by executingGoOnThe-

Bridge) while the leftController is suspended). Two variables,trainsin andtrainsout, are

added to the code for verification purposes, explained in Section4.6.

In Figure 4.1, encapsulation of rebecs in a component and also three types of message

71

passing can be seen. The two left and right controllers of the bridge are tightly coupled

and are encapsulated in a component. It allows the synchronous message passing between

them. Trains are independent objects and can communicate by broadcasting asynchronous

messages. It is also shown that the broadcasted messages are only serviced by the provider

rebecs.

Further, in Section 4.6, we will show the application of our modular verification ap-

proach on this example.

4.6 Formal Verification of Properties

Formal verification of properties for components, is a problem ofmodel checking of open

systems. By an open system, we mean a system that interacts with its environment and

whose behavior depends on this interaction; unlike aclosed system, whose behavior is

completely determined by the state of the system. The crucial point in model checking an

open system, which is usually referred to asmodule checking, is modeling the environment.

To model the nondeterminism, an environment can be modeled as a general process with

arbitrary behavior [62, 34, 10, 9].

For module checking components in extended Rebeca, we define a general environ-

ment. A component interacts with its environment by means of sending and receiving

72

asynchronous anonymous messages. Because of the asynchronous nature of the commu-

nication mechanism, we only need to model the messages generated by the environment.

Each message generated by the environment is broadcasted to the internal rebecs of the

component. If the required service is provided by a rebec, the message is put in the rebec’s

queue.

To model an environment which simulates all the possible behaviors of a real environ-

ment, we need to consider an environment nondeterministically sending unbounded num-

ber of messages. It is clear that model checking will be impossible in this case. To over-

come this problem, we use an abstraction technique. Instead of putting incoming messages

in the queues of rebecs, they may be assumed as a constant set of requests to be processed

at any time, in a fair interleaving with the processing of the requests in the queue. This way

of modeling the environment, generates a closed model which is bisimilar to the model re-

sulting from a general environment which nondeterministically sends unbounded number

of messages.

We will proceed by a formal definition of a general environment for Rebeca compo-

nents. Then we show that the component’s behavior in this general environment, weakly

simulates the behavior of the component being concurrently executed with any arbitrary

component. So, we can use model checking to prove certain properties for a component

73

interacting with a general environment, and then deduce that these properties preserve for

that component in any environment. Before showing the weak simulation, we use our

abstraction technique to overcome the unboundedness problem of queues in a general en-

vironment, and make model checking feasible.

Definition 18 (Environment of a component)

For each componentC, we define a componentEC as a general environment forC, where

EC nondeterministically broadcasts all the provided messages ofC.

The global configuration made byC andEC is a closed model which we denote it asM,

i.e. M = {C,EC}. The interface and body of componentEC can automatically be derived

from the interface ofC. The required messages ofEC are all the provided messages ofC,

EC has no provided message and no instance variable. For each provided messagesmC of

C, there is a rebec inEC, which has one method namedactive in its body. This method

sends two messages: firstmC to C, and second anactivemessage to itself. Sending the

active message to itself makes an infinite loop for sending themC to C. According to the

broadcast mechanism, the environment componentEC also receives all the messages from

componentC. As there are no provided messages inEC, they are all purged.

In modeling environment as a component, we use existing data abstraction techniques

74

to reduce the number of messages to a finite set, but still the number of sent messages can

be unbounded. Given this assumption, we proceed to next definition.

Definition 19 (Queue abstraction)

In the modelM = {C,EC}, instead of putting all the messages coming fromEC in the

message queues of rebecs inC, we model each external message by a transition ofC. More

specifically, for each external messagem we introduce the following local transition:

〈r,σ,nil ,q〉 r.m−→ 〈r,σ,S,q〉,

whereS is the handler ofm. In this way, the queues of the closed systemC only contain

internal messages and we obtain a finite model ofM in case the transition system of the

closed systemC is finite. This abstraction ofM we denote byCa.

Theorem 1 (Correctness of the queue abstraction)

The modelM = {C,EC}, is bisimilar to modelCa. The proof is based on the fair interleav-

ing manner of processing the messages in the queue and the set of provided messages.

Now, we will proceed by defining the weak simulation relation between two models in

Rebeca, first one consists of a component and the general environment, and the second one

consists of that component with any arbitrary component. Here, according to Theorem 1,

75

we can develop the preorder relation upon the abstracted model. Next, we define a general

definition for weak simulation, and then continue by applying the definition on our specific

models.

Definition 20 (Weak Simulation)

Given two transition systemsΣ1 = (S1,T1, I1) andΣ2 = (S2,T2, I2) whereSi is the set of

states forΣi , Ti ⊆ Si×Si is the transition relation,Ii is the initial state forΣi :

1. A relationH is aR-simulation betweenΣ1 andΣ2, whereH,R⊆ S1×S2, if and only

if for all s1 ands2, if H(s1,s2) then the following conditions holds:

(a) R(s1,s2).

(b) For every states′1 such that(s1,s′1)∈ T1 we have(s′1,s2)∈H (stuttering), or else

there is a states′2 with the property that(s2,s′2) ∈ T2 and(s′1,s
′
2) ∈ H.

2. We say thatΣ2 R-simulatesΣ1 (denoted byΣ1≤ Σ2) if there exists aR-simulationH

betweenΣ1 andΣ2 such thatH(I1, I2).

The above general definition for the specific case of models in extended Rebeca, shall be

instantiated by defining relationH between the states of two systems. For that we need a

projection definition:si ↓C means the projection of statesi of the modelMi , over variables

76

and queues of rebecs in componentC, and for the queues, only considering messages com-

ing from internal rebecs. It means ignoring the variables and contents of message queues

of other components inM and also ignoring the messages sent from other components in

the queues of rebecs inC. So,s1 ↓C = s2 ↓C means variables of rebecs in component C

have the same value in statess1 ands2, and also the message queues of rebecs inC have

the same content in statess1 ands2, considering only the messages coming from internal

rebecs ofC.

Based on Definitions 18 , 19 and 20, we have the following theorem.

Theorem 2 (Weak simulation between models)

Given a componentC and an arbitrary componentC′, the transition systemΣ1 = (S1,T1, I1)

of the (abstracted) modelCa, R-simulates the transition systemΣ2 = (S2,T2, I2) of the

modelM2 = {C,C′}, whereR(s1,s2) iff s1 ↓C = s2 ↓C.

The formal proof is quite similar to one in [53]. Intuitively, it is based on the fact that

in each state of the transition systemΣ2, the enabled transitions are a subset of enabled

transitions in the correspondent state of the transition systemΣ1. By correspondent states,

we mean the states inΣ1 andΣ2 which satisfy the simulation relation, starting from the

initial state. This is because of the definition of general environment which covers all the

possible messages, and hence transitions.

77

Definition 21 (Satisfaction relation)

1. A computation of a componentC is a maximal execution path beginning at the initial

state. Given an LTL formulaφ, we say thatC |= φ iff φ holds for all computations of

C.

2. Given a CTL formulaφ, we say thatC |= φ iff φ holds in the initial state ofC.

We have the following theorem from [17].

Theorem 3 (Property preservation)

If M1 weakly simulatesM2, then for every ACTL* or LTL formulaφ without the next

operator (with atomic propositions on variables inM1), M2 |= φ impliesM1 |= φ.

In the module checking approach we used Definition 18, by modeling a general envi-

ronment as a component. Then, we used Definition 19 and Theorem 1 to abstract from

unbounded queues resulting from external messages and as such obtain a reduction of the

state-space.

Next, we shall explain how to model check the obtained closed model. In model check-

ing the asynchronous kernel of Rebeca, we gained a significant state reduction due to the

78

asynchronous nature of communication and computation which allows to model the execu-

tion of a method as an atomic operation. In the presence of the synchronous communication

mechanism this is no longer possible because of the additional synchronization between

sender and receiver which requires the introduction of new states. However, this extension

is bounded by the number of synchronous messages and rebecs, and as an internal behavior

of a component, it is resolved by model checking, without any effects on the theorem.

Execution of a method is no more an atomic operation, it may be interrupted as a con-

sequence of sending or receiving a synchronous message, i.e., sender and receiver have to

wait at the handshaking point until the other pair arrives. Therefore, it is no more the case

that every transition is only taking a message from top of a rebec’s queue and execute its

corresponding method. It should be first checked whether the rebec is in a hold state at a

rendezvous point, waiting for a matching send or receive to happen. Also, while executing

a method, a rebec may reach a handshaking point for which another rebec is already wait-

ing. In this case, the values of the parameters are passed to the receiver and the method

execution is continued. Also, a flag for the pair is set, indicating that the handshaking has

been taken place and the hold rebec can continue its execution in its next turn.

79

Verifying Properties of the Bridge Controller Consider the Bridge controller model

in Figure 4.1, explained in Section 4.5. Safety and progress properties of the model can

be verified by translating the Rebeca code into SMV or Promela using our tool described

in the next section. Mutual exclusion is that at any moment only one train should be on

the bridge, progress is that trains should finally pass the bridge, and no starvation is both

trains finally pass the bridge. These properties can be checked using the state variable

OnTheBridgeof trains. The LTL formula for checking these properties are the followings

(2 denotesalwaysand♦ denotesfinally) :

• Mutual exclusion:2!(train1.OnTheBridge&& train2.OnTheBridge)

• Progress:2♦(train1.OnTheBridge|| train2.OnTheBridge)

• No starvation:2♦(train1.OnTheBridge) && ♦(train2.OnTheBridge)

These properties should also be translated to the specification languages of NuSMV

and Promela. For module checking, we consider the controller component. Our purpose

is to check its properties in all the possible conditions, i.e., in a general environment. In

this example, a general environment is an environment sending to controller component,

all of its provided messages in a nondeterministic way. The provided messages areArrive

serviced byleftControllerandLeaveserviced byrightController. Our tool supports module

80

checking components by modeling the abstracted environment. Here, it means that in those

states where the statement to be executed is nil, two transitions corresponding to execution

of methodsArrive andLeaveare always enabled.

In Module checking the controller component, we remove all other rebecs including

their state variables and queues. So, we cannot reachOnTheBridgevariables to check

the properties. In this case, state variablestrainsin of theLeftCtrl and trainsout of the

theRightCtrlcan be used to check the safety property:

2 (theLe f tCtrl.trainsin− theRightCtrl.trainsout≤ 1). To check the deadlock property, a

variable has to be added to show sendingYouMayPassmessage.

Chapter 5

A Tool for Model Checking Rebeca

5.1 Introduction

Rebeca Verifier is an environment to create Rebeca models, edit them, and translate them

into SMV [1] or Promela [4]. Also, modeler can enter the properties to be verified at the

Rebeca code level. The temporal logic supported by the tool for specifying the properties

is based on the specification language of the back-end model checkers. The output code

can be model checked by NuSMV [1] or Spin [4] respectively. Modular verification and

automatic abstraction is also supported by the tool. Based on a Rebeca model, one can

choose a subset of reactive objects in the model as a component. The tool then automati-

cally generates the component model, as a Rebeca model, which can be translated to SMV

as well. To build the component model out of components, a general environment is sim-

ulated by allowing all possible interactions. Figure 5.1 is a block diagram showing the

81

82

language, verification approach, under lined theories, and tool features, together with their

relationships.

5.2 The Rebeca Verifier

The Rebeca Verifier [55, 54, 57] provides an integrated environment to create Rebeca mod-

els and corresponding components, specify properties, and translate models and compo-

nents to SMV or Promela. Using the tool, a user can create, edit and debug Rebeca codes,

such that the code can be successfully translated to one of the back-end model-checker

languages. The required properties can be expressed at Rebeca source code level, using

temporal specification patterns based on the specification language of the back-end model

checkers. These properties can also be automatically translated to the specification lan-

guage of the selected back-end model checker. The output code can be model checked by

NuSMV or Spin.

Modular verification is also supported by the tool. The user designates the component

to be verified, and then the tool automatically generates a closed model and translates it

to the language of back-end model checkers. Properties should be specified based on the

variables in the component. The rebecs in the rest of the model are abstracted and their state

variables and message queues are not included in the generated code. Modular verification

83

Figure 5.1: Rebeca: Supported by Tool

84

supported by tool, is further described in Section 5.5. Figure 5.2, shows the use case

diagram of the system, including creating models and components, specifying properties,

and translating them into SMV or Promela.

The UML component diagram of the tool is shown in Figure 5.3. Rebeca Verifier

is written in Java and consists of components: Property handler, Component generator,

and Code generators which use Property parser, Model parser and JGraph packages. We

used SableCC [25] for generating the parser. SableCC produces shift-reduce parsers for

LALR(1) grammars expressed in EBNF format. Parsers generated by SableCC produce

abstract syntax tree (AST) of the input code. Component generator, and SMV and Promela

code generators uses this AST to navigate in the Rebeca source code and build the SMV

or Promela result code. The user can also specify a LTL or CTL property based on rebecs

variables. The property handler, changes this property to the suitable form to be used by

NuSMV or Spin.

Component generater also includes a model viewer to visualize the model using JGraph

package. In the visualized model, the user can select a subset of rebecs in a Rebeca model to

create a component. This will generate an open system. The rebecs which are now interact-

ing with the outside world and their interface with the environment are all determined and

visualized. The component composed by its environment makes a closed system, called a

85

component model, which can be automatically generated by the tool. A simple example in

Section 5.6 shows the approach.

Although the property-preserving abstraction technique is used to prevent an unbounded

amount of external messages coming into the queue, but still the queue may grow unbound-

edly by putting messages which are sent by internal rebecs. The back-end model checkers

do not support unbounded data types, so we need a limit for each rebec queue. A queue

length, which can be different for each rebec, is provided by the tool and is defined by

the modeler. The queue overflow can be checked as a property by the tool, and the queue

length can be increased if necessary.

5.3 Translating Rebeca to SMV

NuSMV [1] is a symbolic model checker which verifies the correctness of properties for

a finite state system. The system should be modeled in the input language of NuSMV,

called SMV, and the properties should be specified in CTL or LTL. The only data types

in the language are finite ones, including booleans, scalars and fixed arrays. A SMV code

is a set ofModuledefinitions, including amain module. Processesare instantiated from

Modules, and are used to model interleaving concurrency. The program executes a step by

non-deterministically choosing aprocess, then executing all of the assignment statements

86

Edit and syntax checking of

Rebeca model

Create component from a Rebeca

model

Generate SMV code from a

Rebeca model

Specify a property for Rebeca

model

<<extend>>

Modeler

Generate Promela code from a

Rebeca model

<<extend>>

Figure 5.2: Use Case Diagram of Rebeca Verifier

in that process in parallel. The main control structure in SMV is thenext-casestatement.

Using this statement, the programmer can specify the next value of a variable, according to

the current value of all variables in the code.

In Rebeca Verifier, the SMV code generater is used to produce SMV codes from Rebeca

models [55]. The mapping from Rebeca constructs to SMV is shown in Table 5.1. Each

class in Rebeca is translated to a module in SMV and for each rebec a process is defined.

87

Property Handler

Component generator

SMV code generator

Rebeca Verifier

SableCC-generated

Property Parser

Rebeca Verifier uses Property Handler to

transform a Rebeca property specification

to a NuSMV specification.

JGraph is an open-source graph

packge available for Java. Rebeca

Verifier uses this component for

displaying Rebeca model and

components.

R2SMV is a component for

generating SMV code from a

Rebeca model.

SableCC is an object-

oriented parser generator

that generates parsers in the

Java programming language.

SableCC-generated

Model Parser

JGraph

This component takes a parsed Rebeca

model and after interacting with user to

determine the component(Model viewer),

generates the output component.

Promela code generator

R2P is a component for

generating Promela code from

a Rebeca model.

Figure 5.3: Component Diagram of Rebeca Verifier

88

Each method of a rebec has to be executed in an atomic step, it can be done in a SMV

process. All the changes to a specific variable in a process, under different conditions, shall

be indicated in onenext-casestatement. So, all the assignments to one variable in different

methods of a rebec are mapped into onenext-casestatement. There is a variable in the

translated SMV code which specifies the method that is currently executed. This variable

is used to set up the correct condition in thecasepart of thenext-casestatement. To be

able to translate a Rebeca code into SMV, we do not allow loops, and multiple assignments

to the same variable in a method.

Execution of rebecs methods depends on the messages in the message queue, in each

step the message on the top of the queue is taken and its corresponding method is executed

atomically. Message queues are translated into arrays in SMV. With no variable indexes

for arrays in SMV, the translated code becomes very long. In our translation procedure,

we considered some optimizations to generate an efficient code in SMV with the minimum

reachable states while not violating Rebeca semantics. For instance, we need to manipulate

empty entries in the message queue in a way not to produce a dummy new state. Modeling

the message queue as a structured variable increases the number of state variables consid-

erably and it may cause state explosion quickly.

Instead of defining fixed length arrays for all rebecs, we let the modeler to define the

89

Table 5.1: Mapping Rebeca Constructs to SMV
Rebeca construct SMV construct

class module
rebec process

known objects parameters of the process
message queue array
message server distributed in the code of a process

state variables of a rebec local variables of a process

length of the queue. A queue-overflow variable (corresponding to each rebec) is maintained

in SMV code and can be checked as a property. Often, in our case studies, we had to

increase the length of the queues to allow proper executions without the queue overflow.

5.4 Translating Rebeca to Promela

Spin [4] is a model checker that supports the design and verification of asynchronous

process systems. Process interactions can be specified in Spin with rendezvous primitives,

asynchronous message passing through buffered channels, shared variables, and also the

combination of them.

In the Rebeca Verifier, the Promela code generater is used to produce Promela codes

from Rebeca models. The mapping from Rebeca constructs to Promela is shown in Ta-

ble 5.2. Each class in Rebeca is a proctype in Promela, and each rebec is a process. Each

method of a rebec is mapped to an atomic block in the corresponding process in Promela.

90

Table 5.2: Mapping Rebeca Constructs to Promela
Rebeca construct Promela construct

class proctype
rebec process

known objects parameters of the process
message queue channel
message server atomic block

state variables of a rebec global variables
non-deterministic assignment if-selection

synchronous message zero length channel

The message queues can easily be modeled by channels, according to the length specified

by modeler. Within an infinite loop in a process, the message channel is read for the next

message to be served. After receiving a message, the atomic block associated to that mes-

sage will be executed. Processes (rebecs) are instantiated in the init process of Promela. In

extended Rebeca (which is presented in [52] and enriches Rebeca with a formal concept

of components in modeling and provides an additional communication mechanism based

on synchronous message-passing), for each synchronous message there is a zero-length

(rendezvous) channel in Promela code.

A major problem in mapping an object-based code to Promela concerns the state vari-

ables. In Spin, properties can only be specified on global variables. In Rebeca we do

not have global variables, and our properties are based on state variables of rebecs. In the

mapping algorithm, all state variables in Rebeca are mapped to global variables in Promela.

91

5.5 Creating Components and Module Checking

The compositional verification approach for Rebeca models is explained in Chapter 3. For

compositional verification we need to model check a component, which is a subset of the

closed model and build an open model itself. Then, use our theory to prove the desired

properties for the whole model. For model checking an open model we need to simulate

the environment, this is called modular model checking or module checking [62, 34]. Simu-

lating and abstracting the environment as a set of external messages, are done automatically

by Rebeca Verifier.

To create a component, the whole model is visualized and the modeler can select a sub-

set of rebecs in the model as a component. This will generate an open system. The rebecs

which are now interacting with the outside world and their interface with the environment

are all determined and visualized. The open component which is composed by its envi-

ronment makes up a closed system, called a component model. The tool determines the

external rebecs which interact with the component as its environment, and a Rebeca code

is automatically generated for this component model. Each external rebec is modeled in

the Rebeca code of the component model by indicating the messages that are sent by it.

The SMV code then can be generated from the component model.

External rebecs are not modeled as processes, so all of their state variables are removed

92

from the model. In the internal rebecs which could receive messages from outside, a fair

nondeterministic choice has to be made between internal message on top of the queue,

and all the external messages present. Also, the code that changes the message queues of

external rebecs are removed because these are messages sent to external rebecs which are

no more present. A simple example in Section 5.6 shows the approach.

5.6 An Example: Bridge Controller

Here, we explain a simple example to show our modeling and verification approach using

Rebeca Verifier. Consider a bridge with a track where only one train can pass at a time.

There are two trains, entering the bridge in opposite directions. A bridge controller uses

red lights to prevent any possible collision of trains, and also guarantees that each train will

finally pass the bridge.

Figure 5.4 shows the Rebeca code for bridge controller example. There are two classes,

one for the bridge controller and one for the trains. The bridge controller uses its state

variables to keep the value of the red lights on each side, and has flags to know whether

a train is waiting on each side of the bridge or not. When theinitial message server of a

train is executed, aPassedmessage is sent to self. Serving this message causes a message

Leaveto be sent to the bridge controller and a messageReachBridgeto be sent to self.

93

reactiveclass BridgeController(5) { reactiveclass Train(3) {
knownobjects { Train t1; Train t2; } knownobjects { BridgeController controller;}
statevars { statevars { boolean onTheBridge; }

boolean isWaiting1; boolean isWaiting2; msgsrv initial() {
boolean signal1; boolean signal2; onTheBridge = false;

} self.Passed();
msgsrv initial() { }

signal1 = false; isWaiting1 = false; msgsrv YouMayPass() {
signal2 = false; isWaiting2 = false; onTheBridge = true;

} self.Passed();
msgsrv Arrive() { }

if (sender == t1) { msgsrv Passed() {
if (signal2 == false) { onTheBridge = false;

signal1 = true; controller.Leave();
t1.YouMayPass(); self.ReachBridge();

} else { isWaiting1 = true; } }
} else { msgsrv ReachBridge() {

if (signal1 == false) { controller.Arrive();
signal2 = true; }
t2.YouMayPass(); }

} else { isWaiting2 = true; } } main {
} Train train1(theController);
msgsrv Leave() { Train train2(theController);

if (sender == t1) { BridgeController theController(train1, train2);
signal1 = false;
if (isWaiting2) { }

signal2 = true;
t2.YouMayPass();
isWaiting2 = false; }

} else {
signal2 = false;
if (isWaiting1) {

signal1 = true;
t1.YouMayPass();
isWaiting1 = false; } }

}
}

Figure 5.4: Bridge Controller Example

94

MethodReachBridgesends anArrive message to the bridge controller. By receiving the

messageArrive, in the case that the light for the other side of the bridge is red, the bridge

controller gives the permission to the requester to pass the bridge by sending it aYouMay-

Passmessage. If the light for the other side of the bridge is green, then the train cannot pass

and a flag is set to indicate that the train is waiting. By receivingYouMayPassmessage, a

train sends aPassedmessage to itself. By receiving aLeavemessage, the bridge controller

checks if the other train is waiting to pass and sends aYouMayPassmessage to it if it is

waiting and sets the lights properly.

In modular verification of Rebeca codes, a component is generated by decomposing

a model into components. The environment is defined as a set of external messages, and

external messages can be derived from provided messages of all internal rebecs of a com-

ponent. As the whole system is generated first, all the possible senders of a message are

known.

A component is chosen by the modeler based on the property to be proven, in a way

that the overall property of the system is derivable from components properties. In this

approach, we can prove the properties of the different components of a model, which can

include shared rebecs, and use deduction to prove the required property of the system. In

the bridge controller example, the required properties are that at any moment only one train

95

should be on the bridge (mutual exclusion), trains should finally pass the bridge (progress),

and both trains finally pass the bridge (no starvation). So the system properties are specified

in LTL (Linear Temporal Logic) [24] as follows:

• Mutual exclusion:2!(train1.OnTheBridge&& train2.OnTheBridge)

• Progress:2♦(train1.OnTheBridge|| train2.OnTheBridge)

• No starvation:2(♦(train1.OnTheBridge) && ♦(train2.OnTheBridge))

Here, we can decompose the model into two components, each withBridgeController

and one of the trains in it. Because of the symmetry present in the model, it is enough to

consider one of the components, model check it, and then use deduction to prove the overall

property of the system out of component properties proved by model checking. Figure 5.5

shows a snapshot of the system, creating the required component. For the component in

Figure 5.5, the state variables of rebectrain1 are abstracted away. So, we need to rephrase

the properties according to the state variables ofBridgeControllerandtrain2:

• Mutual exclusion:2 !(theController.signal1 && theController.signal2)

• Progress:2♦(theController.signal1 || theController.signal2)

• No starvation:2(♦(theController.signal1) && ♦(theController.signal2))

96

These rephrased properties are proved by model checking. We also prove the property:

• 2 (theController.signal2→♦(train2.OnTheBridge))

Using the rephrased properties and the latter property, the system’s properties are proved

accordingly.

In the next section, the state space generated for model checking bridge controller ex-

ample (and other examples) are presented and compared with the module checking the

components, and the amount of state space reduction is shown.

97

Figure 5.5: A Snapshot of the Tool, Creating a Component from Bridge Controller Exam-
ple.

Chapter 6

Case Studies

6.1 Introduction

Rebeca Verifier is used to model check typical simple case studies as well as some medium-

sized case studies (like the IEEE CSMA/CD protocol [47, 19]). We selected typical case

studies from [39] and also from the case studies which are model checked by existing model

checkers. For example we modeledleader election(both LCR and HS algorithms) [39],the

commit problem[39], trains and the bridge controller[11], dining philosophers[29, 49,

39], readers and writers, andgossiping girls. These case studies are translated to SMV or

Promela or both, and are included at Rebeca Home page [2]. The compositional verification

approach is applied on some of these case studies and the state space reduction is evaluated.

Note that comparing SMV and Promela or their corresponding model checkers is not

our goal. The goal is to examine the expressive power of Rebeca in modeling typical

98

99

cases of different computing paradigms in modeling distributed and concurrent systems;

and evaluating the compositional verification approach and find the patterns on which this

approach works efficiently; and also investigate and extend the tool capabilities. Although,

comparing NuSMV and Spin, considering a number of criteria, is considered as our future

work. In the following we shortly explain a number of case studies, for the first three ex-

amples compositional verification approach is applied and state space reduction is gained.

Module checking by Rebeca Verifier is currently supported by SMV code generater, the

model checking process is done by NuSMV 2.1.2, executed on Windows XP professional,

CPU: Athlon XP 1700+, with 512 MB RAM.

Safety, deadlock and starvation properties are first checked for the close model. In all

the examples, there were bugs in our code which were found by model checking. Some

of the bugs simply were in initializing variables and some were more serious ones, in

communication and synchronization between rebecs. The CPU time and memory used by

SMV for computing total and reachable states are shown for the first three case studies.

Also, the components that are selected and model checked are given. These results show

that how modeling the components instead of the whole system can help in reducing the

reachable states.

100

Table 6.1: Trains and the Controller: Closed-World Compared to Component-Based Ap-
proach (results generated by NuSMV)

Approach Model Reachable Total states CPU time Memory
states (mm:ss) (KByte)

Closed-world 2 Trains/Controller 203 5.16e+13 00:00 8956
Component- 1 Train/Controller 231 2.38e+09 00:00 8612

based (an ext. Train)

6.2 Bridge Controller

This example is explained in Chapter 5. In this example there are two trains travelling oppo-

site to each other. There is a bridge in the path, which is not wide enough to accommodate

both trains. There is also a bridge controller which has to prevent collisions between the

two trains. Model checking results are summarized in table 6.1. It can be seen that total

state space is reduced in the order of104, but the number of reachable states is slightly

increased. Number of rebecs present in the component is less than the rebecs present in the

close model, and so the number of state variables are less in the component. The number

of reachable states is increased because of the external messages that are always present in

a component model, but are not really sent in the close model.

We checked the queue-overflow condition and found out that queue length of two for

the trains and four for the bridge controller is enough for preventing overflow.

101

6.3 Dining Philosophers

This example is explained in Chapter 3. We modeled the dining philosophers example as a

case study and translated it into SMV using the tool. There aren philosophers at a round

table. To the left of each philosopher there is a fork, but s/he needs two forks to eat. Of

course only one philosopher can use a fork at a time. If the other philosopher wants it, s/he

just has to wait until the fork is available again. The system safety requirement is that at

any given time two neighboring philosophers cannot both hold the fork between them.

In the close system, there are eight rebecs, four philosophers and four forks. The com-

ponent includes two philosophers and one fork, so we have three internal rebecs, and only

two external ones. Other rebecs do not send any messages to internal rebecs of the specified

component. These two external rebecs are two forks adjacent to the internal philosophers.

The reduction in state space is significant in this example and is shown in Table 6.2. Only

in the close model with two philosophers and two forks, the reachable states are less than

reachable states of the component. This is again caused by external messages which made

the enabled transitions more than the real enabled transitions in a close world. But total

states are less because of the reduction in number of variables.

This case study can be considered as a prototypical example of a general problem con-

sisting of a set of reactive objects arranged in a ring-shape topology; representing a resource

102

Figure 6.1: A Snapshot of the Tool, Creating a Component from Dining Philosophers
Example.

allocation problem involving allocation of pairwise shared resources in this ring of objects.

The model in Rebeca is scalable without any changes in the code of philosophers or forks,

as the links between rebecs do not change by increasing the number of rebecs (see fig-

ure 6.1 which is a snapshot of the tool creating a component consisting of two philosophers

and one fork). Thus, the properties which are satisfied for the component preserves for the

model consisting of any number of rebecs.

103

Table 6.2: Dining Philosophers: Closed-World Compared to Component-Based Approach
(results generated by NuSMV)

Approach Model Reachable Total states CPU time Memory
states (mm:ss) (KByte)

Closed-world 2 Phils/2 Forks 285 3.28e+22 00:00 11136
3 Phils/3 Forks 14671 8.79e+36 00:12 19304
4 Phils/4 Forks 390720 1.80e+52 06:28 38700

Component- 2 Phils/1 Fork 4132 1.16e+21 00:02 14076
based (2 External Forks)

Table 6.3: Readers and Writer: Closed-World Compared to Component-Based Approach
(results generated by NuSMV)

Approach Model Reachable Total states CPU time Memory
states (mm:ss) (KByte)

Closed-world 3 Readers/1 Writer 3293 2.60e+23 00:02 18288
Component- Data Buffer 180 1.81e+09 00:00 8664

based (external R/W)

6.4 Readers and Writers

This is the typical example of a data buffer that multiple readers can read from it, but only

one writer can write into it. Here, we need a message queue of length two for both readers

and writers, and four for the data buffer. This case study can be considered as a prototypical

example of a problem consisting of a critical section and requesters arranged in a star-like

topology around it.

104

6.5 Leader Election

Leader election example is selecting a node as a leader in a ring ofn nodes. In this ring,

each node has a unique identifier which is supposed to be an integer number. The leader

shall be the node with the leastid among all of theids. Each node knows its ownid and

can send messages to one of the nodes next to it or both of them, i.e., the ring can be uni-

or bi-directional. The leader is selected by sending messages to other nodes.

At the beginning, each node introduces itself as the leader to its neighbor(s). Each node

compares theid in the received message to its ownleader id, and substitutes itsleader id

with the newid received in the case that the receivedid is less than the currentleader id.

If a change is made to a node’sleader id, it will declare this change to its neighbors

by sending messages to them, containing its newleader id. Two possible algorithms for

solving this problem are named LCR and HS. The time order in LCR algorithm isO(n2).

This time order is decreased toO(nlogn) in HS algorithm.

HS Algorithm Each node acts in a set of phases. Node i that is in phase 1, sends a

message containing its ID in two directions. These messages pass through a21 length way

and then return to the sender. If both of the send messages are returned to the sender, node

i will continue acting in the next phase. The sent messages might not get back to the node.

105

When the message sent by node i moves outwards this node, every node located in its way

compares its own leader ID to the ID in the message. If their own leader ID is less than the

ID in the message, it will be substituted. If it is greater than it, the message will be ignored.

In case they are equal, this means that the node has received its own ID, so the node selects

itself as the leader. In the returning way, nothing is done to the message and it just passes

through the nodes. The algorithm terminates when a node receives its sent messages from

both sides with its own ID, and each message has passed through half of the ring.

LCR Algorithm This algorithm is declared in a directed ring in which the nodes are

unaware of the number of the other nodes in the ring. First, each node sends its leader ID -

which is equal to its own ID at the beginning - to its right neighbor, and receives a leader

ID from its left neighbor. If the received lead ID is greater than its own leader ID, it will

substitute its leader ID with the new ID and declares this change to its right neighbor. If the

received leader ID is less than a node’s leader ID, it will be ignored. In case the received

leader ID is equal to the node’s leader ID, the node will be considered as the real leader,

and the algorithm terminates.

106

activeclass Node(8) {

 knownobjects {

 Node nodeL;

 Node nodeR;

 }

 statevars {

 boolean monitor;

 int myId;

 int phase;

 int monitorId;

 boolean receivedLeft;

 boolean receivedRight;

 }

 msgsrv initial(int id) {

 myId = id;

 monitor = false;

 monitorId = id;

 phase = 1;

 receivedLeft = false;

 receivedRight = false;

 self.arrive();

 }

 msgsrv arrive() {

 nodeL.receive(myId, true, phase);

 nodeR.receive(myId, true, phase);

 }

 msgsrv receive(int msgId, boolean inOut, int

hopCount) {

 if ((sender==nodeL) && (inOut)){

 if (((msgId <monitorId)||(msgId==monitorId)) &&

(hopCount >1)){

 monitorId = msgId;

 //temp= hopCount-1;

 nodeR.receive (msgId, true, hopCount-1);

 }

 else {

 if (((msgId <monitorId)||(msgId==monitorId)) &&

(hopCount ==1)){

 monitorId=msgId;

 nodeL.receive (msgId, false,1);

 }

 else{

 if (msgId == myId) {

 monitor = true;

 monitorId = myId;

 }

 }

 }

 }

 if ((sender==nodeR) && (inOut)) {

 if (((msgId <monitorId)||(msgId==monitorId)) &&

(hopCount >1)){

 monitorId=msgId;

 //temp= hopCount-1;

 nodeL.receive (msgId, true, hopCount-1);

 }

 else{

 if (((msgId <monitorId)||(msgId==monitorId)) &&

(hopCount ==1)) {

 monitorId=msgId;

 nodeR.receive (msgId, false,1);

 }

 else {

 if (msgId == myId) {

 monitor = true;

 monitorId = myId;

 }

 }

 }

 }

 if ((sender==nodeL) && !(inOut) &&

!(msgId==myId)){

 nodeR.receive(msgId, false, 1);

 }

 if ((sender==nodeR) && !(inOut) &&

!(msgId==myId)){

 nodeL.receive(msgId, false, 1);

 }

 if ((sender==nodeL) && (msgId == myId) && !(inOut)

&& (hopCount==1)){

 receivedLeft = true;

 }

 if ((sender==nodeR) && (msgId == myId) && !(inOut)

&& (hopCount==1)){

 receivedRight = true;

 }

 if (receivedLeft && receivedRight&& (phase<3)){

 if(phase==2) {

 monitor=true;

 }

 else{

 phase = phase * 2;

 receivedLeft=false;

 receivedRight=false;

 nodeL.receive(myId, true, phase);

 nodeR.receive(myId, true, phase);

 }

 }

 }

}

main {

 Node node1(node4,node2):(1);

 Node node2(node1,node3):(2);

 Node node3(node2,node4):(3);

 Node node4(node3,node1):(4);

}

Figure 6.2: Leader Election Example: HS Algorithm

107

activeclass Node(4) {
knownobjects {

Node rightNode;
}
statevars {

int id; // my id
int leaderId;

}
msgsrv initial(int myid) {

id = myid;
leaderId = myid;
rightNode.receive(myid);

}
msgsrv receive(int lId) {

if (lId > leaderId) {
leaderId = lId;
rightNode.receive(lId);

}
if (lId == leaderId) {

// I am the leader

}
}
msgsrv arrive() {

leaderId = id;
rightNode.receive(id);

}
}

main {
Node node00(node01):(0);
Node node01(node02):(1);
Node node02(node03):(2);
Node node03(node04):(3);
Node node04(node05):(4);
Node node05(node06):(5);
Node node06(node07):(6);
Node node07(node00):(7);

}

Figure 6.3: Leader Election Example: LCR Algorithm

108

6.6 CSMA/CD Protocol

In this section, we briefly describe the Media Access Control (MAC) sub layer of the Car-

rier Sense, Multiple Access with Collision Detection (IEEE 802.3 CSMA/CD) communi-

cation protocol. This protocol is used in multiple access shared media environments such

as Ethernet LANs, which use a shared bus for connecting a number of independent comput-

ers. The protocol specification consists of MAC entities interconnected by a bi-directional

Medium. Each MAC is representative of a computer in the data link layer. The MAC

entities are identical for all computers and can both transmit and receive messages over

the shared Medium. This means that collisions may occur on the Medium (if two MAC’s

transmit simultaneously). It is assumed that collisions will be detected in the Medium and

signaled to every MAC. Each MAC after transmitting a packet over the Medium, waits to

make sure that no collision has occurred; but if collision occurs, it tries to retransmit its last

packet, until it gets the chance to send the packet successfully without any collision.

As shown in Figure 6.4, a MAC may receivesendmessages from its higher level,

indicating a new packet to be sent over the Medium. The MAC cannot process the next

packet before it has transmitted the previous packet successfully over the Medium. In the

simplified model of the protocol shown in Figure 6.4, the target of a packet is clearly the

other MAC present in the composition. Each MAC, similarly, signals arec message to its

109

M

MAC1 MAC2

send rec send rec

Figure 6.4: The MAC Sublayer of CSMA/CD Protocol

higher level upon successful receipt of a packet from the Medium.

Modeling in Rebeca For modeling this protocol in Rebeca, we defined two active classes:

one for the MAC class and another for the Medium class, as shown in Figures 6.6 and 6.7.

The role of the components in the higher level is abstracted in our model using a nondeter-

ministic choice in the MAC for deciding when a new packet is available for sending. The

other role of this layer, which is receiving the packets, does not change any thing in the

model and can easily be ignored.

The composition of our model consists of two instances of the MAC class and one

instance of the Medium class. In order to send a packet, each MAC goes through the

following scenario, as shown in Figure 6.5. After it has decided to send a packet in the

’start’ state, the MAC sends ab message to the Medium and enters the ’transfer’ state. In

110

Start

Transfer

Wait for Ack

receivedSend = true /

M.b()

- / M.e() acknowledged= true,
 col= true
 / M.b()

acknowledged = False

receivedSend= false

acknowledged= true, col=

false

Figure 6.5: State Chart of a MAC Showing theSend Cycle

the ’transfer’ state, it sends ane message to the Medium, indicating the end of the packet.

Then if no collision has occurred, packet transmission is finished and the MAC can get

back to the ’start’ state; otherwise, it should retransmit the last packet by sending a newb

to the Medium and going back to the ’transfer’ state. We name the above cycle, theSend

cycleof the rebec MAC.

Collision is detected by the Medium if both MACs try to send packets at the same

time. However, since we are using asynchronous message passing, collision in our model

is defined as the Medium receiving twob messages from both MACs before it has received

their correspondinge messages. This way of modeling collision (the coincidence of the

time that two MACs try to send packets) shows how we can model the concept of time

using asynchronous message passing.

111

The important point here is that although the MACs work independently from the

Medium, they need to wait for the Medium’s response after sendingb ande to make sure

whether collision has happened. This is achieved by repeatedly sending thewait4ackmes-

sage toself until the acknowledgment from the Medium is received. The Medium on the

other hand, needs to wait for the MAC’s bothb ande messages to make sure whether col-

lision has happened or not. Therefore, the Medium only after receivinge from a MAC can

determine if its transmission has been collision-free, and give corresponding acknowledg-

ment.

In order to simplify the model, the receipt of a packet is represented by only one mes-

sage from the Medium to the receiving MAC, after which the Medium is assumed to be

empty and ready for the next packet transmission. This has no effect on the generality of

the model; because we can assume that the MAC starts receiving sometime in between

receivingb ande messages from the other MAC, and ends receiving upon receipt ofrec

message, which is sent by Medium immediately after processing thee message from the

sending MAC. It should be noted that after receiving messageackRecfrom both of the

MACs, anyb from either of them no longer collides with this finished transmission.

When the Medium is processing anemessage, if no collision has happened, acollision-

falsemessage can be sent to the sender of thee message. On the other hand, which is the

112

case of a collision, thecollisiontruemessage needs to be broadcast to both MACs. In such

a case, the Medium surely will receive twoemessages, because it already has received two

bs. If we do the broadcast just at the firste, we may lose track thebs and the nexte (which

should be ignored) may conflict with the next transmission from the MAC that had sent the

first e.

Verification Results The CSMA/CD protocol (shown in Figures 6.6 and 6.7) is veri-

fied using Rebeca Verifier. We used Rebeca Verifier to generate codes in both SMV and

Promela. The results of verification of the last version of our model by NuSMV is 1438

reachable states out of 2.2378e+21 total states. In Spin, the max depth is 6603, and the

number of stored states is 9184.

In the preliminary versions of our Rebeca model, the number of reachable states in

equivalent SMV model exceeds 8 million. Version 6 in Table 6.4 represents one of these

versions. The number of reachable states, the CPU time for computing these states, and also

the memory used in this computation are shown. Table 6.4 shows the results of executing

NuSMV on a Pentium IV 2.00 GHz (full cache) system with 1.0 GB RAM.

Existence of redundant message servers in the MACs, although correct, results in an

excessive increase in the number of states. This is caused by the fact that a rebec needs to

113

activeclass Mac(3) {
knownobjects {

Medium medium; }
statevars {

boolean receivedSend;
boolean col;
boolean acknowledged; }

msgsrv initial() {
acknowledged = false;
receivedSend = ?{true, false};
col=false;
self.start();

}
msgsrv rec(){

medium.ackRec();
}
msgsrv start (){

if (receivedSend){
receivedSend=false;
medium.b();
self.transfer();

}
else {

receivedSend = ?{true, false};
self.start();

}
}
msgsrv transfer(){

acknowledged = false;
medium.e();
self.wait4ack();

}
msgsrv wait4ack (){

if (acknowledged) {
acknowledged = false;
if (col){

medium.b(); /* retransmit */
self.transfer();

}
else{

receivedSend = ?{true, false};
self.start();

}
}
else {

self.wait4ack();
}

}
msgsrv collisiontrue(){

col = true;
acknowledged = true;

}
msgsrv collisionfalse(){

col = false;
acknowledged = true;

}
}

Figure 6.6: Rebeca Code for MAC

114

activeclass Medium(5) {
knownobjects {

Mac mac1; Mac mac2; }
statevars {

boolean bb1; boolean bb2;
boolean r1; boolean r2;
boolean col; }

msgsrv initial() {
bb1=false; bb2=false;
col = true; }

msgsrv b() {
if (sender == mac1){

bb1 = true; }
else{

bb2 = true;
} }

msgsrv e() {
if (sender == mac1) {

if (!bb2 && bb1){
mac2.rec();
self.ackReceive1();
bb1 = false;
col = false; } }

else {
if (bb1){

mac1.collisiontrue();
mac2.collisiontrue();
bb1 = false;
col = true; }

else{
mac1.rec();
self.ackReceive2();
col = false;

}
bb2=false;

} }
msgsrv ackReceive1(){

if (!r2){
self.ackReceive1(); }

else{
mac1.collisionfalse();
r2 = false;

} }
msgsrv ackReceive2(){

if (!r1){
self.ackReceive2(); }

else{
mac2.collisionfalse();
r1 = false;

} }
msgsrv ackRec(){

if (sender == mac1){
r1 = true; }

else{
r2 = true;

} }
}

Figure 6.7: Rebeca Code for Medium

115

Table 6.4: CSMA/CD Versions Compared using NuSMV
Version States Compute time Memory (KB)

6 8×106 00 : 23 : 10 972,413
8 2×106 00 : 05 : 23 118,016

9.5 1438 00 : 00 : 00 14,292
9.6 951 00 : 00 : 00 13,384

send a message to itself in order to make a transition from one state to another. Therefore,

arrival of a message between each two state transitions can cause a virtual new state. It

increases the state space proportional to the number of steps in the life cycle of the rebec.

Removing redundant message servers results in version 8 in Table 6.4.

In these versions we also have queue overflow. This is due to the logical unfairness in

the execution of MAC instances. One MAC may infinitely send packets. Consequently the

Medium putsrecmessages in the queue of the other MAC. As long as the sender MAC gets

more turns than the receiver MAC, the number of messages in the queue increases. In order

to handle this problem, some kind of logical fairness is introduced in versions9.5 and9.6.

To ensure that MACs receive incoming packets, acknowledgements are sent, declaring that

a MAC has received the last packet; i.e., it finds the chance for execution in the situation

explained above.

The safety property, which is verified and proved to be true in the model, is that no

collision occurs when one of the MACs receives a packet. For that, we defined acolvariable

116

in the Medium indicating the collision. The LTL (Linear Temporal Logic) specification of

this property is as follows:

G((medium.r1∨medium.r2)→!(medium.col))

Version 9.6 is developed in order to check the property that there is a possible computation

where although collision happens, the packet is finally received. For this purpose, we

simplified the model in the way that only one packet is sent. If collision occurs, the MAC

retransmits the packet. The LTL specification of this property is as follows:

(mac1.col∧mac1.acknowledged)

→ F(medium.r2)

and its symmetric counterpart:

(mac2.col∧mac2.acknowledged)

→ F(medium.r1)

In global, the other MAC may never receive the packet, as collision may happen forever.

So, the following specifications are false:

G((mac1.col∧mac1.acknowledged)

→ F(medium.r2))

117

G((mac2.col∧mac2.acknowledged)

→ F(medium.r1))

Chapter 7

Rebecs as Components in a
Coordination Language

7.1 Introduction

The Rebeca semantics, as explained in Chapter 2 is not compositional. We cannot construct

the semantics of the total model by composing the semantics of each rebec which constructs

the model. The compositional verification approach which is discussed in Chapter 3 is

based on decomposing a Rebeca model as a closed model and not composing the rebecs as

the components of a model.

The possibility of mapping Rebeca models into a coordination language, Reo [13, 15],

is investigated and a natural mapping which provides us a compositional semantics of Re-

beca is found. As reactive objects (rebecs) are encapsulated and loosely coupled modules

118

119

in Rebeca, we consider them as components in a coordination language. Modeling the co-

ordination and communication mechanisms between rebecs can be done by Reo circuits,

and the behavior of each rebec is specified by constraint automata [14] as a black-box

component within the Reo circuit.

7.2 Reo: a Coordination Language

Components-based software development has been proposed by several authors as a so-

lution to the increasing complexity of software development.Components are assumed to

be individual and independent units of functionality and deployment and thus to turn them

into an application, a mechanism for component composition is needed.

As an important part of component composition mechanism, a piece of connecting code

has to be devised in order to match different requirements in a component composition.

This piece of code is often referred to asglue code. The glue code can range from a simple

synchronization and ordering primitive to a complicated distributed coordination protocol.

It is often necessary to be able to specify and design these connecting devices and analyze

and reason about their behavior individually, as well as in orchestration with (abstract)

behavioral models of components.

Reo is a model for building component connectors in a compositional manner. It allows

120

for modeling the behavior of such connectors, formally reasoning about them, and once

proven correct, automatically generating the so-called glue code from the specification.

Reo’s notion of components and connectors is depicted in Figure 7.1, where component

instances are represented as boxes, channels as straight lines, and connectors are delineated

by dashed lines. Each connector in Reo is, in turn, constructed compositionally out of

simpler connectors, which are ultimately composed out of primitive channels.

C4

C5

C6C2

C3

C1C4

C5

C6C3

C2

C1C2

C3

C1

(c) two 3−way connectors and a 6−way connector(a) a 3−way connector (b) a 6−way connector

Figure 7.1: Components and Connectors

Reo is a compositional approach to defining component connectors. Reoconnectors

(also calledcircuits) are constructed in the same spirit as logic and electronics circuits: take

basic elements (e.g., wires, diodes and transistors) and connect them. Basic connectors in

Reo arechannels. Each channel has exactly two ends, which can be asinkend or asource

end. Asinkend is where data flows out of a channel, and asourceend is where data flows

121

in a channel. It is possible that the channel ends of a channel are both sink or both source. A

channel must support a certain set of primitive operations, such as I/O, on its ends; beyond

that, Reo places no restriction on the behavior of a channel. This allows an open-ended

set of different channel types to be used simultaneously together in Reo, each with its own

policy for synchronization, buffering, ordering, computation, data retention/loss, etc. But

for our purpose to model Rebeca models, we need a small set of basic channels.

Channels are connected to make a circuit. Connecting channels is putting channel ends

together in anode. So, anode is a set of channel ends. A node in Reo has a certain

semantics: for all the source channel ends on a node, a fork operation takes place which is

copying the outgoing data to all the channel ends; for all the sink channel ends on a node, a

merge operation takes place which is a nondeterministic choice between incoming data. A

node is called a sink node if it consists of only sink channel ends, it is called a source node

if it consists of only source channel ends, and it is called a mixed node if it consists of both

sink and source channel ends. Figures 7.2.a and b show sink nodes, Figures 7.2.c and d

show source nodes, Figure 7.2.e shows a mixed node. Components can only be connected

to sink or source nodes, mixed nodes are hidden from outside world.

A component can write data items to a source node that it is connected to. The write

operation succeeds only if all (source) channel ends coincident on the node accept the data

122

a c d eb

Figure 7.2: Nodes in Reo

item, in which case the data item is transparently written to every source end coincident on

the node. A source node, thus, acts as areplicator. A component can obtain data items,

by input operation, from a sink node that it is connected to. A take operation succeeds

only if at least one of the (sink) channel ends coincident on the node offers a suitable data

item; if more than one coincident channel end offers suitable data items, one is selected

nondeterministically. A sink node, thus, acts as a nondeterministicmerger. A mixed node

is a self-contained “pumping station” that combines the behavior of a sink node (merger)

and a source node (replicator) in an atomic iteration of an endless loop: in every iteration a

mixed node nondeterministically selects and takes a suitable data item offered by one of its

coincident sink channel ends and replicates it into all of its coincident source channel ends.

A data item is suitable for selection in an iteration only if it can be accepted by all source

channel ends that coincide on the mixed node.

Figure 7.3 shows a Reo connector, exclusive router which we call it asXrouter. Here,

123

M

Z

W U
N

E B

X

F

Figure 7.3: Exclusive Router

we use it to show the visual syntax for presenting Reo connector graphs and some fre-

quently useful channel types. This circuit is used in modeling Rebeca by Reo. The enclos-

ing thick box in this figure representshiding: the topologies of the nodes (and their edges)

inside the box are hidden and cannot be modified. It yields a connector with a number of

input/outputports, represented as nodes on the border of the bounding box, which can be

used by other entities outside the box to interact with and through the connector.

The simplest channels used in these connectors are synchronous (Sync) channels, rep-

resented as simple solid arrows. A Sync channel has a source and a sink end, and no buffer.

It accepts a data item through its source end iff it can simultaneously dispense it through its

124

sink. A lossy synchronous (LossySync) channel is similar to a Sync channel, except that it

always accepts all data items through its source end. If it is possible for it to simultaneously

dispense the data item through its sink (e.g., there is a take operation pending on its sink)

the channel transfers the data item; otherwise the data item is lost. LossySync channels

are depicted as dashed arrows, e.g., in Figure 7.3. Another channel is the synchronous

drain channel (SyncDrain), whose visual symbol appears as the edge XZ in Figure 7.3. A

SyncDrainchannel has two source ends. Because it has no sink end, no data value can

ever be obtained from this channel. It accepts a data item through one of its ends iff a data

item is also available for it to simultaneously accept through its other end as well. All data

accepted by this channel are lost.

Two channels which are used in modeling Rebeca but are not included inXroutercir-

cuit, areFilter and a special kind ofFIFO channels. We defineFIFO as an unbounded

asynchronous channel where data can flow in unboundedly from the input port of it (sink

node) and flow out of the output port (source node) if it is not empty; input and output

operations cannot take place simultaneously. Figure 7.5 in Section 7.4, shows the Reo no-

tation (and the constraint automaton) of an 1-boundedFIFO channel. We call the special

kind of FIFO channel which is used to model Rebeca communicationsQueue, and it is

defined in Section 7.5.Filter is a channel with a corresponding data pattern, it lets the data

125

matched with the pattern to pass, and lose the other data.Filter channel (and its constraint

automaton) is shown in Figure 7.6.

7.3 Rebecs as Components in Reo

For modeling Rebeca using Reo, we can consider each rebec as a component, and model

the coordination and communication by Reo circuits. For modeling the coordination, an

Xrouter is used which passes the control to each rebec nondeterministically. Communica-

tion takes place by asynchronous message passing which is modeled by queue and filter

channels in Reo.

We model each rebec as a black-box component which starts its execution by receiving

astartsignal, and sends anendsignal upon its end. The behavior of a rebec as a component

is to take a message from its message queue upon receiving thestartsignal through its start

port, execute the corresponding message server, and send anendsignal through its end

port. The coordination, which is modeled by interleaved execution of rebecs, is handled by

Xrouterwhich passes thestartsignal to one and only one rebec, waits until receiving anend

signal, and passes thestart signal again. This loop is repeated byXrouter, and sending the

signals is done by a nondeterministic choice, which guarantees the execution to be exactly

according to the semantics of Rebeca. The Reo circuit in Figure 7.4 shows theXrouter

126

ExRouter

1 … i … n

take send

rebec_1

start end

take send

rebec_i

start end

take send

rebec_n

start end

F

I

F

O

F

I

F

O

F

I

F

O

... ...

... ...

1...i...n

n...i...1

1...i...n 1...i...n

n...i...1 n...i...1

F_iF_1 F_n

M_1 M_nM_i

Figure 7.4: Modeling Rebeca by Reo

and other channels which are used to manage the coordination and also communication

between rebecs.

For the communication between rebecs, we need queue and filter channels. The mes-

sage queues of rebecs are modeled by queue channels, each queue models a message queue.

127

We need to design a circuit which allows only the messages which are sent to the corre-

sponding rebec to get into its queue, and filter out the other messages. In Figure 7.4, there

are fork nodes namedFi , and merge nodes namedMi . All the messages that are sent by a

rebecrebeci get out of its portsend, then pass aSyncchannel and enters the corresponding

fork nodeFi . Here, a message is copied into all the source channel ends of the outgoing

filter channels. For a model withn rebecs, there aren filter channels, which filter all the

messages except those whose receiver is the one matched to that filter channel. The filter

pattern for all the channels toward a rebec is the id of that rebec. So, all the filter channels

which are merged in the nodeMi filter out the messages whose receivers are notrebeci ,

and only the proper message can pass through the filters and get into the merger node and

hence to the message queue (the queue).

Upon receiving astart signal, a rebec takes a message from its queue by enabling the

takeport, and then execute the corresponding message server. During this execution, the

messages which are sent, flow out of the rebec component throughsendport, and arrive to

the message queue of the destination rebec properly, passing the fork node, filter channels,

and merge node.

Now, we have a Reo circuit which models a Rebeca model. But, to be able to construct

the compositional semantics of a model and verify the properties we need to have a proper

128

semantics for this Reo circuit and also for the rebecs. Constraint automata [14] is presented

as a compositional semantics for Reo circuits and can be used to model components and

the glue code circuit in a consistent way, and provide us also with verification facilities.

7.4 Constraint Automata: Compositional semantics of Reo

Constraint automata are presented in [14] to model Reo connectors. We also use constraint

automata to model the components, then we have a Rebeca model fully modeled by con-

straint automata. In this section, we explain the definition of constraint automata and how

the constraint automata of a Reo circuit is compositionally constructed.

Using constraint automata as an operational model for Reo connectors, the automata-

states stand for the possible configurations (e.g., the contents of the FIFO-channels of a

Reo-connector) while the automata-transitions represent the possible data flow and its ef-

fect on these configurations. The operational semantics for Reo presented in [13] can be

reformulated in terms of constraint automata. Constraint automaton of a given Reo con-

nector can also be defined in acompositionalway. For this, composition operators for

constraint automata corresponding to the Reo connector primitives are presented.

Constraint automata use a finite setN of names, e.g.,N = {A1, . . . ,An}whereAi stands

for the i-th input/output port of a connector or component. The transitions of constraint

129

automata are labeled with pairs consisting of a nonempty subset ofN , denoted byN, and

a data constraintg. Data constraints can be viewed as a symbolic representation ofsets

of data-assignments. Formally, data constraints are propositional formulae built from the

atoms “dA = d” which means that data itemd is assigned to portA. Data constraints are

given by the following grammar:

g ::= true
∣∣∣ dA = d

∣∣∣ g1∨g2

∣∣∣ ¬g

whereA is a name andd ∈ Data. In the sequel,DC(N,Data) shows a nonempty subsetN

of N , and denotes the set of data constraints using only atoms “dA = d” for A∈ N. As an

abbreviation forDC(N ,Data), we can useDC. The boolean connectors∧ (conjunction),

⊕ (exclusive or),→ (implication),↔ (equivalence), and so on, can be derived as usual.

We often use derived data constraints such asdA 6= d or dA = dB which stand for the data

constraints

_
d′∈Data\{d}

(dA = d′) and
_

d∈Data

(
(dA = d) ∧ (dB = d)

)
,

respectively.

We assume a global data domainData for all names. Alternatively, we could assign a

data domainDataA to every nameA and require type-consistency in the definition of data

constraints.

130

The assumption thatData is finite allows us to derive data constraints as “dA = dB” or

“dA ∈ D” or “ (dA,dB) ∈ E” for D⊆ DataandE ⊆ Data×Data.

The symbol|= stands for the obvious satisfaction relation which results from interpret-

ing data constraints over data-assignments. For instance,

[
A 7→ d1,B 7→ d2,C 7→ d1

] |= dA = dC,[
A 7→ d1,B 7→ d2,C 7→ d1

] 6|= dA = dB

if d1 6= d2. With this satisfaction relation, we may identify any data constraintg with the

setδ of all data-assignments whereδ |= g holds.

Satisfiability and validity, logical equivalence≡ and logical implication≤ of data con-

straints are defined as usual; e.g.:

g1≡ g2 iff for all data-assignmentsδ: δ |= g1 ⇐⇒ δ |= g2

g1≤ g2 iff for all data-assignmentsδ: δ |= g1 =⇒ δ |= g2

Definition of constraint automata We now present the definition of constraint automata

which can serve as operational model for channel-based coordination language, Reo.

Definition 22 [Constraint automata] A constraint automaton (over the data domainData)

is a tupleA = (Q,N ames,−→,Q0) where

• Q is a set of states,

• N amesis a finite set of names,

• −→ is a subset ofQ×2N ames×DC×Q, called the transition relation ofA ,

131

• Q0⊆Q is the set of initial states.

We writeq
N,g−→ p instead of(q,N,g, p) ∈−→. We callN the name-set andg the guard of

the transition. For every transition

q
N,g−→ p

we require that (1)N 6= /0 and (2)g∈ DC(N,Data). A is called finite iffQ, −→ and the

underlying data domainDataare finite.

¤

The intuitive meaning of a constraint automaton as an operational model for connectors

of a coordination language is similar to the interpretation of labelled transition systems as

formal models for reactive systems. The states represent the configurations of the connec-

tor, the transitions the possible one-step behavior where the meaning of

q
N,g−→ p

is that in configurationq the portsAi ∈ N have the possibility to perform I/O-operations

that meet the guardg and that lead from configurationq to p, while the other portsA j ∈

N ames\N do not perform any I/O-operation.

Example 9 (1-bounded FIFO channel)Figure 7.5 shows a constraint automaton for a 1-

bounded FIFO channel with input portA and output portB. Here, we assume that the data

domain consists of two data items0 and1.

132

q0

p0

p1

{A}

d_A=0

{B}

d_B=0

{A}

d_A=1
{B}

d_B=1

A B

Figure 7.5: Constraint Automaton for a 1-Bounded FIFO Channel

Intuitively, the initial stateq0 stands for the configuration where the buffer is empty,

while the statesp0 andp1 represent the configurations where the buffer is filled with one of

the data items.¤

The intuitive behavior of a constraint automaton is thatA starts in one of its initial states

q0. If the current state isq, thenA waits until data items occur at some of the input/output

portsAi ∈ N ames. Suppose data itemd1 occurs atA1 and data itemd2 at A2 while (at

this moment) no data is observed at the other portsA3, . . . ,An. This triggers the automaton

to check the data constraints of the outgoing{A1,A2}-transitions of stateq to choose a

transition

q
{A1,A2},g−−−−→ p

where
[
A1 7→ d1,A2 7→ d2

] |= g and move to statep. If there is no{A1,A2}-transition from

q whose data constraint is fulfilled thenA rejects. In general, if data occur exactly at the

133

input/output portsAi ∈N then onlyN-transitions (but noN′-transitions whereN′ is a subset

or superset ofN) where the data constraint is fulfilled can fire.

Having this behavior in mind, the intuitive meaning of conditions (1) and (2) in Defi-

nition 22 is as follows. Condition (1) stands for the requirement that automata-transitions

can fire only if some data occurs at one or more of the portsA1, . . . ,An, while condition (2)

formalizes that the behavior of an automaton may depend only on its observed data (and

not on data that will occur sometime in the future).

We now explain how constraint automata can be used to model the possible data flow

of a given Reo circuit. The nodes of a Reo-circuit play the role of the ports in the constraint

automata. We provide acompositionalsemantics for Reo circuits. Thus, we need constraint

automata for each of the basic channel connectors and automata-operations to mimick the

behavior of the Reo-operations for join and hiding.

Constraint automata for the basic channels Figure 7.6 shows the constraint automata

for some of the standard basic channel types: synchronous channels with sourceA and sink

B, synchronous drain with the sourcesA, B, lossy synchronous channels with sourceA and

sink B, and filter with sourceA and sinkB and patternP. In every case, one single state is

sufficient. Moreover, the automata are deterministic.

134

A B

Sync

A B

SyncDrain

{A,B}

d_A = d_B

{A,B}

LossySync
A B

{A,B}

d_A = d_B {A}

Filter
A B

{A,B}

d_A = P

d_B = P

{A}

d_A = P

P

Figure 7.6: Constraint Automata for Basic Connectors

A constraint automaton for the FIFO1 channel was shown in Example 9. For FIFO

channels with capacity≥ 2, similar constraint automata can be used. However, the number

of states grows exponentially with the capacity. For instance, for a FIFO2 channel with

the data domain{0,1} we need 7 states representing the configurations where the buffer

is empty or the buffer contains one element (0 or 1) or is full (00, 01, 10 or 11). For

unbounded FIFO channels we even get constraint automata with an infinite state space.

Join: merge and product

Definition 23 [Product-automaton] The product-automaton of the two constraint automata

135

A1 = (Q1,N ames1, −→1, Q0,1) andA2 = (Q2,N ames2,−→2,Q0,2), is:

A1 ./ A2 = (Q1×Q2,N ames1∪N ames2,−→,Q0,1×Q0,2)

where−→ is defined by the following rules:

q1
N1,g1−→1 p1, q2

N2,g2−→2 p2, N1∩N ames2 = N2∩N ames1

〈q1,q2〉 N1∪N2,g1∧g2−−−−−−−→ 〈p1, p2〉
and

q1
N,g−→1 p1, N∩N ames2 = /0

〈q1,q2〉 N,g−→ 〈p1,q2〉
and latter’s symmetric rule.¤

It remains to explain how the join of two sink nodes, sayA and B, is realized with

constraint automata. To capture the merge semantics of the resulting (new) nodeC, we

use amergeras shown in Figure 7.71 which we then join (via the product-operator./)

with the constraint automata that containA andB respectively. We then can again apply

the product-construction to join the resulting constraint automaton (that containsC in its

name-set) with another constraint automaton that containsC as a source node.

Parameterized Constraint Automata In the previous examples, we concentrated on

data-abstract coordination mechanism. In many applications, the data-abstract view is too

coarse, e.g., for reasoning about the functionality of the components that are glued together.

Because data-dependencies often lead to rather complex constraint automata, we propose

1In a similar way, a merger can be defined as a connector with three or more “input” nodes.

136

 {A,C}
 d_A = d_C

 constraint automata
 for the merger

 {B,C}
 d_B = d_C

A

B
C is viewed as

A

B
Cmerger

Figure 7.7: The Merger

q(x)q_0

{A}
x := d_A

{B}

d_B=x

Figure 7.8: Parameterized Constraint Automaton for a 1-Bounded FIFO Channel

a parameterized notation which can simplify the picture of constraint automata with non-

trivial guards. For instance, the 1-bounded FIFO channel with arbitrary data domain can

be depicted as in Figure 7.8.

The automaton in Figure 7.8 isnot a constraint automaton, but an intuitive symbolic

representation of the constraint automaton with state-spaceQ = {q0}∪{q(d) : d ∈ Data},

137

Q0 = {q0}, N ames= {A,B} and the transitions

q0
{A},dA=d−−−−−→ q(d), q(d)

{B},dB=d−−−−−→ q0

for any data itemd ∈ Data. Formally, to reason about data-dependent coordination mech-

anisms, we define aparameterized constraint automatonas a tuple

P = (Loc,Var,v,N ames,Ã,Loc0, init)

where

• Loc is a set of locations,

• Loc0⊆ Loc is a set of initial locations,

• Var a set of variables,

• v : Loc→ 2Var assigns to any locatioǹa (possibly empty) set of variables,

• init is a function that assigns to any initial location` ∈ Loc0 a condition for the

variables.

v(`) can be viewed as the parameter list of location`. For instance, in Figure 7.8 we use

q(x) to denote thatq is a location with parameter listv(q) = {x}, while q0 is a location

with an empty parameter list. The initial condition forq0 is omitted which denotes that

init (q0) = true.

138

The transition relationÃ of a parameterized constraint automaton is a (finite) set of

tuples(`,N,h,X, `′), written in the form

`
N,hÃX ¯̀.

Here,

• ` and ¯̀are locations,

• N is a non-empty name-set,

• h a (parameterized) data constraint forN, built out of atoms of the form “dA = expr”.

The expressionexpr is built from constantsd ∈ Data, the symbolsdB for B ∈ N,

variablesx ∈ v(`) and operators for the chosen data domain, e.g., boolean operator

∨, ∧, etc. forData= {0,1} and arithmetic operators+, ∗, etc. forData= IN.

• The subscriptX of the above transition stands for a function that assigns a nameA∈

N to each variablēx∈ v(¯̀)\v(`) and possibly to some of the variables inv(¯̀)∩v(`).

The intuitive meaning ofX(x̄) = A is the assignment “̄x := dA”.

We use parameterized constraint automata as a symbolic representation of (non-parameterized)

constraint automata. The states of the latter are obtained by augmenting the locations with

values for the variables of their parameter list. Formally, givenP as above, the induced

139

constraint automatonAP = (Q,N ames,−→,Q0) is defined as follows. The state-spaceQ

ofAP consists of the pairs〈`,η〉 where` ∈ Loc is a location andη a variable evaluation for

the variablesx∈ v(`), i.e.,η is a function fromv(`) to Data. The states〈`,η〉 with `∈ Loc0

andη |= init (`) are the initial states ofAP . The transition relation−→ is derived fromÃ

by the following rule:

`
N,hÃX ¯̀, η̄ = η[X,δ]|v(¯̀), g = h[x/η(x) : x∈ v(`)]∧g[δ]

〈`,η〉 N,g−→ 〈 ¯̀, η̄〉

whereδ = [A 7→ δA : A∈NX] is an arbitrary data assignment forNX, the set of namesA∈N

whereX contains an assignment “x̄ := dA” andg[δ] is the data constraint

g[δ] =
^

A∈NX

(dA = δA).

The constructh[x/η(x)] stands for the data constraint obtained fromh by syntactically re-

placing variablex with the valueη(x) ∈Data. The constructη[X,δ] denotes the evaluation

for the variables inv(`)∪ v(¯̀) that is obtained fromη by executing the assignments ofX.

For instance,

η[x̄ := dA︸ ︷︷ ︸
X

,A 7→ d︸ ︷︷ ︸
δ

](y) =

{
η(y) : if y∈ v(`)\{x̄}
d : if y = x̄.

The constructη[X,δ]|v(¯̀) denotes the restriction ofη[X,δ] to the variables inv(¯̀).

Note that constraint automata are special instances of their parameterized version with

empty parameter lists for all their locations. (In this case, there is no difference between

140

locations and states, and we haveAA = A .)

The product construction (Definition 23) can easily be modified for parameterized con-

straint automataP1 andP2 with disjoint variable sets such that the unfolding of the product

P1 ./ P2 into a (non-parameterized) constraint automatonAP1./P2 generates the same TDS-

language as the productAP1 ./ AP2 of the constraint automata forP1 andP2.

7.5 Compositional Semantics of Rebeca using Constraint

Automata

To obtain the constraint automata of the coordination and communication parts of the Re-

beca model, which is modeled in Reo, we use the algorithm in Section 7.4. For specifying

the semantics of rebecs we need parameterized constraint automata. To obtain the pa-

rameterized constraint automaton (PCA) of each rebec, we use an algorithm, shown in

Figure 7.9, to extract the PCA directly from the Rebeca code.

In the parameterized constraint automaton for each rebec,

Pi = (Loci ,Vari ,vi ,N amesi,Ãi ,Loc0i , init i)

for all the rebecs, we haveN amesi = {start,end,send, take}, andLoc0i = {idle}. For each

rebecVari includes state variables of the rebec, local variables of each method, andsender

141

Variables: sender, state variables of the rebec, local variables
of each method

addState(’Idle’) addState(’Take Message’) addTransition(’Idle’ to
’Take Message’, N={’start’}) addTransition(’Take Message’ to
’Idle’, N={’take’, ’end’}, d_take(2)=’empty’)

for each message server do begin
addTransition(’Take Message’ to addState(i), N={’take’}, d_take(2)= MessageServerId)
sender := d_take(1)
Determine different flows of control in the message server, according to different conditions
Flag each statement with its correspondent condition
devide each flow of control into fragments:

each fragment ends with a ’send’ statement (or the end of the message server)
for each fragment do
begin

addstate(i)
addTransition(previousstateInFragment to addState(i), N={’send’},

d_send= (receiver, requestedmessageName),
other data constraints: Condition of the fragment,
data assignments: assignment statements in that fragment)

(for the last fragment:
addTransition(previousstateInFragment to ’Idle’, N={’send’,’end’}

d_send= (receiver, requestedmessageName),
other data constraints: Condition of the fragment,
data assignments: assignment statements in that fragment)

)
end

end

Figure 7.9: The Algorithm for Constructing the Parameterized Constraint Automaton from
a Rebec Code

142

variable which gets the value of the sender of each message.

The initial state of the PCA (Parameterized Constraint Automaton) of each rebec is

denoted asidle state. At the beginning all the rebecs are in theiridle state. By getting the

start signal as input from theXrouter, a rebec moves to itsTake Messagestate, where a

message is taken from top of the queue. The data item of the porttakeis assumed to be a

tuple consisting ofsenderof the message and themessage server name. According to the

d take, the next state is chosen. If the message queue is empty the transition goes back to

the idle state. If not, the transition goes to the state which is the beginning of the execution

of a message server. In fact, the second item ofd takewhich is themessage server name

specifies the next state. The rest of the work depends on the statements of the message

servers; at the end of each message server there shall be a transition back to theidle state

which has theendsignal (and maybe asendsignal) on it. We use an example, the bridge

controller, to explain the rest of the algorithm in more details in the next section.

As we mentioned before, we use a special kind of FIFO channel for modeling the

message queue. The main point is that we want to be able to realize the situation when the

queue is empty, this cannot be done with the conventional definitions of FIFO in Reo [15,

13], so we assume that there is a special data denoted byemptywhich shows that the queue

is empty. We define the behavior of message queue channel according to the constraint

143

��

take
d_take = (sq2, mq2)

sq0 := sq1
sq1 := sq2
sq2 := self

mq0 := mq1
mq1 := mq2

mq2 := empty

take
d_take = (sq0, mq0)

sq0 := self
mq0 := empty

take
d_take = (sq1, mq1)

sq0 := sq1
sq1 := self

mq0 := mq1
mq1 := empty

send
(sq1, mq1) := d_send

send
(sq2, mq2) := d_send

sq0 := sq1 := … := self
mq0 := mq1 := … := empty

send
(sq0, mq0) := d_send

take
d_take = (self, empty)

0

1

2

3

Figure 7.10: Constraint Automaton for the 4-Bounded Message Queue Channel

automaton shown in Figure 7.10. In this figure we show the behavior of a bounded queue.

7.6 An Example: Bridge Controller

The bridge controller is chosen as an example to be modeled by constraint automata. This

example is described in Section 5.6, and the Rebeca code is shown in Figure 5.4. There is

144

a bridge with a track where only one train can pass at a time. There are two trains, entering

the bridge in opposite directions. A bridge controller uses red lights to prevent any possible

collision of trains, and also guarantees that each train will finally pass the bridge.

Figure 7.11 shows the constraint automata for each train and Figure 7.12 shows the

constraint automata for the bridge controller. The initial state for a train isidle state. We

move to thetake messagestate by receiving thestart signal. A train has four message

servers:initial , YouMayPass, Passed, andReachBridge. For each one of these message

servers there is an outgoing transition from thetake messagestate. There is also another

transition which is fired when the message queue is empty. The four first transitions, each

goes to a state showing the beginning of a message server. The last one goes back to the

idle state outputting theendsignal.

As described in the algorithm of Figure 7.9, we have to consider the different flows of

control in each message server. In the message servers of the trains we only have one flow

of control. We partition each flow by thesendstatements. For example in the message

serverPassedwe have two fragments. You can see two transitions corresponding to the

sendstatements in Figure 7.11. Theendsignal is added to the last transitions, which can

be considered as an optimization issue. Considering the controller, we have conditional

statements in message serversArrive andLeave, and hence more than one possible flow of

145

control. The transitions generated for different flows of controls can be seen in Figure 7.12.

146

1. Take

Message

0. idle

2. initial

3. You

May Pass

4. Reach

Bridge

5. passed

ta
ke

, e
nd

d_
ta

ke
 =

 {
se

n
d
er

,
‘e

m
pt

y’
}

ta
k
e

d
_

ta
k
e

 =
 {

s
e
n

 d
e

r,
 ‘
in

it
ia

 l’
}

ta
k
e

d
_

ta
k
e

 =
 {s

e
n

d
e

r , ‘ y
o
u

M
a

y
P

a
s
s

’ }

ta
k
e

d
_

ta
k
e

 =
 {s

e
n

d
e

r, ‘re
a

c
h

B
rid

g
e

’}

take

d_take =
 {sender, ‘passed’}

6.

send, end

onTheBridge := false

d_send := {self, ‘
passed’}

send, endonTheBridge := true
d_send := {self, ‘passed’}

send, end

d_send := {controller, ‘arrive’}

se
n
d

o
n

T
h
e

B
ri

d
g

e
 :

=
 f
a

ls
e

d
_

s
e
n

d
 :

=
 {

c
o
n

tr
o
ll
e
r,

 ‘
le

a
v
e
’}

send, end

d_send := {self, ‘reachBridge’}

start

Figure 7.11: Modeling Train by Constraint Automata

147

1.

Dispatch

2. initial

take, end

d_take = (_, ‘empty’)

ta
k
e

d
_
ta

k
e

=
(

_
,
‘in

it
ia

l’)
s
e
n
d
e
r

:=
d
_
ta

k
e
[1

]

end

signal1
:=

false

signal2
:=

false

isW
aitin

g1 :=
false

isW
aitin

g2 :=
false

4. leave

3. arrive

take

d_take
=

(_, ‘arrive’)

sender :=
d_take[1]

take
d_take = (_, ‘leave’)

sender := d_take[1]

se
nder !=

t1

sig
nal1

!=
fa

lse

s
e
n
d
e
r

=
t1

s
ig

n
a
l2

=
fa

ls
e

s
e
n
d
e
r

=
t1

si
g
n
a
l1

:=
fa

ls
e

s
e
n

d
e

r
!=

t1
s
ig

n
a
l2

:=
fa

ls
e

send, end

signal2 := true

d_send = {t2, ‘youMaypass’}

end

isWaiting2 := true

send, end
signal1 := true

d_send = {t1, ‘youMaypass’}

end
isWaiting1 := true

send, end
isWaiting2 = true

signal2 := true

isWaiting2 := false

d_send = {t2, ‘youMaypass’}

send, end
isWaiting1 = true

signal1 := true

isWaiting1 := false

d_send = {t1, ‘youMaypass'}

se
n
d
e
r
!=

t1

si
g
n
a
l1

=
fa

ls
e

s
e
n

d
e
r

=
t1

s
ig

n
a
l2

!=
fa

ls
e0. Idle

start

s
e
n
d
e
r

=
t1

s
ig

n
a
l1

:=
fa

ls
e

s
e
n
d
e
r

!=
 t
1

s
ig

n
a
l2

 :
=

 f
a
ls

e

end
isWaiting2 != true

end
isWaiting1 != true

Figure 7.12: Modeling Controller by Constraint Automata

Chapter 8

Conclusion and Future Work

Actor-based modeling can help the modeler via its encapsulated constructs, and formal

verification can be used to design more dependable systems. Compositional verification

seems to be a sound way to make formal verification practical, but it can help best when

the model is modular and the modules are encapsulated and loosely coupled. That is where

the modular nature of actor-based modeling may help in formal verification.

In Rebeca, we have independent reactive objects calledrebecs which run concurrently

and communicate by asynchronous message passing. There is an unbounded message

queue for each rebec. We have classes for declaring the rebecs in the model. Therefore

it is possible to reuse the code and simplify the verification process. A nonempty set of

rebecs, referred to as a component, may be used to represent a reactive system.

A system can be decomposed into components that are executed concurrently. We can

148

149

first verify properties of these components, specified in LTL-X or ACTL by model check-

ing, and then conclude the overall system property using these latter results. Composition

of two components is a simple operation due to independence of rebecs in Rebeca. The

result is another component, while no conditions on composing components are required.

We use abstraction and symmetry to tackle state explosion problem. The asynchronous

nature of message passing in Rebeca, let us to use coarse-grained transitions which reduce

the state space and make the model simpler. Abstracting from message queues in specify-

ing system properties introduces some kind of abstraction. In our compositional approach,

we model the environment only by external messages, and the abstraction is to have these

messages in a set and not to put them in the queues. In Rebeca we do not have any restric-

tions for components in parallel composition. Also, we do not need any assumptions about

the environment, in the properties that we prove. We also use symmetry to simplify our

verification process when there are replicated components in the system.

We have enriched the modeling power of the basic message-driven, asynchronous com-

putational model of the actor-based language Rebeca by introducing a formal concept of

components for structuring a model in Rebeca and to integrate asynchrony by synchro-

nous message passing. We exploited the additional structuring mechanisms, provided by

components, in a compositional verification approach based on model-checking. Formal

150

semantics of extended Rebeca is used to establish the verification theory corresponding this

approach.

We generate a front-end tool, Rebeca Verifier, for translating Rebeca models to SMV

or Promela. Our tool supports modular verification, enabling the modeler to model check

components derived from decomposing Rebeca models. This is used in our compositional

verification approach. Abstraction techniques are applied to overcome state explosion prob-

lem.

Modular structure of Rebeca allows for an incremental development of the tool. We

started with Rebeca kernel, as a pure actor-based language, which describes a set of rebecs

in a flat structure, communicating by asynchronous message passing. SMV and Promela

code generators are both implemented for this kernel language. Promela code generator

also supports synchronous message passing which is added to Rebeca as an extension to

support globally asynchronous and locally synchronous systems.

Future Work We defined our compositional verification approach on the simplified ver-

sion of Rebeca ignoring dynamic behavior. With some restrictions on defining components

we can use our compositional approach even in presence of dynamic creation and topology.

In presence of dynamic changing topology, we need to talk about variables of known rebecs

151

of a rebec. In presence of dynamic creation, sometimes it is needed to check the value of a

specific variable for all instances of a class. Therefore, we need quantification over rebecs

and state formulas are predicates instead of propositions. Determining this subject more

precisely is one of our future works.

Our research group in Tehran and Sharif universities is working on the Rebeca Verifier

tool. Currently we are working on extending our tool to support model checking and com-

positional verification of extended Rebeca. Another team is working on translating Rebeca

to Java programs. This will give us a refinement tool which can be another step towards

building a formal methodology for reliable software development.

Direct model checking of Rebeca models is an ongoing project. Without using back-

end model checkers we can exploit Rebeca modularity more efficiently in model checking

algorithms and introduce other abstraction techniques. Data abstraction in model checking

Rebeca codes is now based on the back-end model checker approaches. We provide the

same data types as in SMV and Promela. In our future work, for direct model checking of

Rebeca codes we also need to consider the abstract interpretation of supported data types.

Furthermore, we used Rebeca for modeling security protocols, using dynamic data

structures to describe the behavior of intruders [32]. For model checking these applica-

tions, we therefore need appropriate abstraction techniques. Mitnick attack is also modeled

152

in Rebeca to show how an attacker may chain simple attacks to construct a complex dis-

tributed attack.

The additional synchronous communication of messages increases the modeling power

and also serves as a formal semantic basis for modeling languages like UML. UML inte-

grates an asynchronous event driven model of computation, like that of the actor languages,

with a synchronous model of computation described by state charts. However, a compre-

hensive formal account of the intricacies involved in the interplay between synchrony and

asynchrony in UML is still missing. Currently we are investigating the formal relation-

ship between a subset of UML developed in European IST Project Omega [20] and our

extended Rebeca. This line of research can be seen as a first step to a formal account of the

integration of synchrony and asynchrony in UML.

Bibliography

[1] NuSMV user manual, availabe through http://nusmv.irst.itc.it/NuSMV/

userman/index-v2.html.

[2] Rebeca, http://khorshid.ut.ac.ir/∼rebeca.

[3] Slam project, available through http://research.microsoft.com/slam/.

[4] Spin user manual, available through http://netlib.bell-

labs.com/netlib/spin/whatisspin.html.

[5] M. Abadi and L. Lamport,Conjoining Specifications, ACM Transactions on Program-

ming Languages and Systems17 (1995), no. 3, 507–534.

[6] G. Agha,Actors: A model of concurrent computation in distributed systems, MIT

Press, Cambridge, MA, USA, 1990.

[7] G. Agha,The structure and semantics of actor languages, Foundations of Object-

Oriented Languages (J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, eds.),

Springer-Verlag, Berlin, Germany, 1990, pp. 1–59.

153

154

[8] G. Agha, I. Mason, S. Smith, and C. Talcott,A foundation for actor computation,

Journal of Functional Programming7 (1997), 1–72.

[9] R. Alur, L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang,Automating modular ver-

ification, CONCUR: 10th International Conference on Concurrency Theory, Lecture

Notes in Computer Science, Springer-Verlag, Berlin, Germany, 1999, pp. 82–97.

[10] R. Alur, T. A. Henzinger, F. Y. C. Mang, and S. Qadeer,MOCHA: Modularity in

model checking, Proceedings of CAV’98, vol. 1427, Lecture Notes in Computer Sci-

ence, Springer-Verlag, Berlin, 1998, pp. 521–525.

[11] R. Alur and T.A. Henzinger,Computer aided verification, Tech. Report Draft, 1999.

[12] R. Alur and T.A. Henzinger,Reactive Modules, Formal Methods in System Design:

An International Journal15 (1999), no. 1, 7–48.

[13] F. Arbab, Reo: A channel-based coordination model for component composition,

Mathematical Structures in Computer Science (2004), To appear in February 2004.

[14] Farhad Arbab, Christel Baier, Jan J.M.M. Rutten, and Marjan Sirjani,Modeling com-

ponent connectors in Reo by constraint automata, Proceedings of Second Interna-

tional Workshop on Foundations of Coordination Languages and Software Architec-

tures (FLOCASA’03), to appear, 2003.

155

[15] Farhad Arbab and Jan J.M.M. Rutten,A coinductive calculus of component connec-

tors, Tech. Report SEN-R0216, CWI (Centre for Mathematics and Computer Sci-

ence), Amsterdam, The Netherlands, 2002.

[16] J. Bakker, J. Kok, and J. Rutten,Operational semantics of a parallel object-oriented

language, Conference Record of the 13th Symposium on Principles of Programming

Languages.

[17] E. M. Clarke, O. Grumberg, and D. A. Peled,Model checking, The MIT Press, Cam-

bridge, Massachusetts, 1999.

[18] E. M. Clarke, D. E. Long, and K. L. McMillan,Compositional model checking, Pro-

ceedings, Fourth Annual Symposium on Logic in Computer Science (Asilomar Con-

ference Center, Pacific Grove, California), IEEE Computer Society Press, 5–8 June

1989, pp. 353–362.

[19] Beyer D., Lewerentz C., and Noack A.,Rabbit: A tool for BDD-based verifica-

tion of real-time systems, Proceedings of CAV 2003 (Hunt W.A., Jr. Somenzi, and

F. Somenzi, eds.), Lecture Notes in Computer Science, vol. 2725, Springer-Verlag,

Berlin, Germany, 2003, pp. 122–125.

[20] W. Damm, B. Josko, A. Pnueli, and A. Votintseva,Understanding UML: A formal

semantics of concurrency and communication in real-time UML, Proceedings of For-

mal Methods for Components and Objects (Leiden, The Netherlands), Lecture Notes

156

in Computer Science, vol. 2852, Springer-Verlag, Berlin, Germany, pp. 71–98.

[21] F. S. de Boer,A proof system for the language pool, Foundations of Object-Oriented

Languages (J. W. de Bakker, W. P. de Roever, and G. Rozenberg, eds.), Springer-

Verlag, Berlin, Heidelberg, 1991, pp. 124–150.

[22] W. P. de Roever, h. Langmaack, and A. Pnueli (eds.),Compositionality: The sig-

nificant difference, International Symposium, COMPOS’97, Bad Malente, Germany,

September 1997, Revised Lectures, Lecture Notes in Computer Science, vol. 1536,

Springer-Verlag, Berlin, Germany, 1998.

[23] M.B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C.S. Pasareanu, Robby, , W. Visser,

and H. Zheng,Tool-supported program abstraction for finite-state verification, Pro-

ceedings of the 23nd International Conference on Software Engineering, 2001,

pp. 177–187.

[24] E.A. Emerson,Temporal and Modal Logic, Handbook of Theoretical Computer Sci-

ence (Amsterdam) (J. van Leeuwen, ed.), vol. B, Elsevier Science Publishers, 1990,

pp. 996–1072.

[25] E. Gagnon and L. Hendren,SableCC – an object-oriented compiler framework, Pro-

ceedings of TOOLS 1998, Springer-Verlag, Berlin, 1998, pp. 140–154.

157

[26] M. Gaspari and G. Zavattaro,An actor algebra for specifying distributed systems: The

hurried philosophers case study, Lecture Notes in Computer Science2001 (2001),

216–246.

[27] K. Havelund and T. Pressburger,Model checking Java programs using Java

PathFinder, International Journal on Software Tools for Technology Transfer2

(2000), no. 4, 366–381.

[28] C. Hewitt, Description and theoretical analysis (using schemata) of PLANNER: A

language for proving theorems and manipulating models in a robot, MIT Artificial In-

telligence Technical Report 258, Department of Computer Science, MIT, April 1972.

[29] C. A. R. Hoare,Communicating sequential processes, Prentice-Hall, Englewood

Cliffs (NJ), USA, 1985.

[30] M.R. Huth and M. Ryan,Logic in computer science: Modelling and reasoning about

systems, Cambridge University Press, 2002.

[31] N. Ioustinova, N. Sidorova, and M. Steffen,Closing open SDL-systems for model

checking with DTSpin, FME’2002, Lecture Notes in Computer Science, vol. 2391,

Springer-Verlag, Berlin, Germany, 2002, pp. 531–548.

[32] H. Iravanchi, M. Sirjani, and F. de Boer,Modeling and verifying security protocols

using Rebeca, Tech. Report to appear, CWI, Amsterdam, The Netherlands, 2003.

158

[33] Y. Kesten and A. Pnueli,Modularization and abstraction: The keys to practical for-

mal verification, Proceedings of MFCS-98, vol. 1450, Lecture Notes in Computer

Science, Springer-Verlag, Berlin, Germany, 1998, pp. 54–71.

[34] O. Kupferman, M. Y. Vardi, and P. Wolper,Module checking, Information and Com-

putation164(2001), no. 2, 322–344.

[35] Abadi L. and Lamport L.,Composing specifications, Proceedings of the 1996 ACM

SIGMOD International Conference on Management of Data, Montreal, Quebec,

Canada (H. V. Jagadish and Inderpal Singh Mumick, eds.), ACM Press, New York,

USA, 1996, 1996, pp. 365–376.

[36] L. Lamport,Composition: A way to make proofs harder, Proceedings of COMPOS:

International Symposium on Compositionality: The Significant Difference, Lecture

Notes in Computer Science, vol. 1536, Springer-Verlag, Berlin, Germany, 1997,

pp. 402–407.

[37] K. G. Larsen and R. Milner,A compositional protocol verification using relativized

bisimulation, Information and Computation99 (1992), no. 1, 80–108.

[38] N. A. Lynch and M. R. Tuttle,Hierarchical correctness proofs for distributed algo-

rithms, Tech. Report MIT/LCS/TR-387, MIT, 1987.

[39] N.A Lynch, Distributed algorithms, Morgan Kaufmann, San Francisco, CS, 1996

(English).

159

[40] Z. Manna and A. Pnueli,The temporal logic of reactive and concurrent systems,

Springer-Verlag, Berlin, Germany, 1992.

[41] Z. Manna and A. Pnueli,Temporal verification of reactive systems (safety), Springer-

Verlag, Berlin, Germany, 1995.

[42] I. A. Mason and C. L. Talcott,Actor languages: Their syntax, semantics, translation,

and equivalence, Theoretical Computer Science220(1999), no. 2, 409–467.

[43] K. McMillan, Verification of digital and hybrid systems, Springer-Verlag, Berlin, Ger-

many, 2000.

[44] K. L. McMillan, A methodology for hardware verification using compositional model

checking, Science of Computer Programming37 (2000), no. 1–3, 279–309.

[45] R. Milner, A Calculus on Communicating Systems, Lecture Notes in Computer Sci-

ence, vol. 92, Springer-Verlag, Berlin, Germany, 1980.

[46] R. Milner, J. Parrow, and D. Walker,A calculus of mobile processes, Information and

Computation100(1992), no. 1, 1–77.

[47] J. Parrow,Verifying a CSMA/CD-protocol with CCS, Proceedings of the IFIP Sympo-

sium on Protocol Specification, Testing and Verification (Atlantic City, New Jersey),

North-Holland, 1988, pp. 373–387.

160

[48] S. Ren and G. Agha,RTsynchronizer: language support for real-time specifications

in distributed systems, ACM SIGPLAN Notices30 (1995), no. 11, 50–59.

[49] W. A. Roscoe,Theory and Practice of Concurrency, Prentice-Hall, 1998.

[50] S. Schacht,Formal reasoning about actor programs using temporal logic, Concurrent

Object-Oriented Programming and Petri Nets, Lecture Notes in Computer Science,

vol. 2001, Springer-Verlag, Berlin, Germany, 2001, pp. 445–460.

[51] N. Sidorova and M. Steffen,Embedding chaos, Proceedings of Static Analysis Sym-

posium (SAS01), Lecture Notes in Computer Science, vol. 2126, Springer-Verlag,

Berlin, Germany, 2001, pp. 319–334.

[52] M. Sirjani and F. de Boer,Modular verification of components in an actor-based

language extended with synchronous communication, Tech. Report to appear, CWI,

Amsterdam, The Netherlands, 2004.

[53] M. Sirjani and A. Movaghar,An actor-based model for formal modelling of reactive

systems: Rebeca, Tech. Report CS-TR-80-01, Tehran, Iran, 2001.

[54] M. Sirjani, A. Movaghar, H. Iravanchi, M. Jaghoori, and A. Shali,Model checking in

Rebeca, Proceedings of Parallel and Distributed Processing Techniques and Applica-

tions (PDPTA’03), CSREA Press, USA, 2003, June 2003, pp. 1819–1822.

161

[55] M. Sirjani, A. Movaghar, H. Iravanchi, M. Jaghoori, and A. Shali,Model checking

Rebeca by SMV, Proceedings of the Workshop on Automated Verification of Critical

Systems (AVoCS’03) (Southampton, UK), April 2003, pp. 233–236.

[56] M. Sirjani, A. Movaghar, and M.R. Mousavi,Compositional verification of an object-

based reactive system, Proceedings of the Workshop on Automated Verification of

Critical Systems (AVoCS’01) (Oxford, UK), April 2001, pp. 114–118.

[57] M. Sirjani, A. Shali, M.M. Jaghoori, H. Iravanchi, and A. Movaghar,A front-end tool

for automated abstraction and modular verification of actor-based models, Proceed-

ings of ACSD 2004.

[58] K. Stahl, K. Baukus, Y. Lakhnech, and M. Steffen,Divide, abstract and model-check,

Proceedings of the 5th International SPIN Workshop on Theoretical Aspects of Model

Checking, Lecture Notes in Computer Science, vol. 1680, Springer-Verlag, Berlin,

Germany, 1999.

[59] C. Talcott,Composable semantic models for actor theories, Higher-Order and Sym-

bolic Computation11 (1998), no. 3, 281–343.

[60] C. Talcott, Actor theories in rewriting logic, Theoretical Computer Science285

(2002), no. 2, 441–485.

162

[61] Y. Tsay, Compositional verification in linear-time temporal logic, Proceedings of

FOSSACS 2000, Lecture Notes in Computer Science, vol. 1784, Springer-Verlag,

Berlin, Germany, 2000, pp. 344–358.

[62] M. Y. Vardi, Verification of open systems, Lecture Notes in Computer Science1346

(1997), 250–267.

[63] C. Varela and G. Agha,Programming dynamically reconfigurable open systems with

SALSA, ACM SIGPLAN Notices36 (2001), no. 12, 20–34.

[64] A. Yonezawa,ABCL: An object-oriented concurrent system, Series in Computer Sys-

tems, MIT Press, 1990.

