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Abstract

RebecaReactive Ohjeds Language is an actor-based language for modeling concurrent
and distributed systems. Providing a formal foundation, Rebeca is designed in an effort
to bridge the gap between formal verification approaches and real applications. Its Java-
like syntax and object-based style of modeling makes it easy to use for software engineers.
A front-end tool is developed as an integrated environment to create Rebeca models and
translate them into existing model-checker languages.

The encapsulated structure of reactive objects, and the asynchronous communication
mechanism (with no blocking from either sender or receiver), lead to a natural modular
design and loosely coupled modules. This is exploited to apply compositional verification
and abstraction techniques and reduce the state space, and hence, make it possible to verify
complicated reactive systems. In the compositional verification approach, sub-systems are
defined based on an user-defined decomposition of the model. Sub-systems are more ab-
stract than the model itself, and so we can reduce the state space of the model which makes
it more amenable to model checking techniques. Using weak simulation relation between
the constructs, it is proved that the abstraction techniques preserve a set of behavioral spec-
ifications in temporal logic.

Rebeca is then extended with a formal concept of components to provide a general
framework which integrates both synchrony and asynchrony. Components are used to en-
capsulate a set of internal reactive objects. Components interact only via asynchronous and
anonymous messages, while the internal reactive objects interact by asynchronous and also
synchronous message passing mechanisms.

Semantics of Rebeca is specified compositionally, by mapping Rebeca models into the

Xi



Xii

coordination language, Reo, and using Constraint Automata as its semantics. Modeling
the coordination and communication mechanisms between reactive objects is done by Reo
circuits, and the behavior of each reactive object is specified by constraint automata as a
black-box component within the Reo circuit.

The Rebeca Verifier tool is used to model check typical simple case studies and some
medium-sized case studies. The Experimental results show that where the computing para-
digm in modeling distributed and concurrent systems is asynchronous, and the interprocess
communication mechanism is message passing, Rebeca can be used easily and efficiently.
Also, there are patterns of models in which our compositional verification approach can be
applied in a scalable way and thus a significant reduction can be gained in verification of
desired properties.
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Chapter 1

Introduction

1.1 Formal Modeling and Verification of Reactive Systems

Reactive systems are systems which have ongoing interactions with their environments,
accepting requests and producing responses [40]. Such systems are increasingly used in
applications where failure is considered as fatal, such as electronic commerce, high-speed
communication networks, traffic control systems, avionics, and automated manufacturing.
Correct and highly dependable construction of such systems is particularly important and
challenging. A very promising and increasingly attractive method for achieving this goal

is using formal verification.



A formal verification method consists of three major components: a model for de-
scribing the behavior of the system, a specification language to embody correctness re-
quirements, and an analysis method to verify the behavior against the correctness require-
ments [41, 41, 17, 30].

Object-oriented modeling is widely used for representing reactive systems, with amenabil-
ity to concurrency and distribution. The actor model [28, 6, 8] is a better candidate than
customary object oriented models, because the units of distribution and concurrency are
objects themselves and not threads, as in Java. This provides a simpler and more natural
concurrency model. The actor model also promotes independent computing entities to
support migration, distribution, dynamic reconfiguration, openness, and efficient parallel
execution.

Much work has been done on formal methods with different kinds of models for system
behavior and different verification approaches; also, the actor model is used in different
ways for modeling open, distributed systems. But to the best of the author’s knowledge,
little is done on verifying actor languages (related work is discussed in Section 1.2).

In this thesis we present a formal method for specifying and verifying properties of

reactive systems, using an actor-based mBddieca [53, 56]. Rebeca is inspired by the

lReactive Oljeds Language



actors paradigm, but goes well beyond it by adding the concepbwiponentand the

ability to analyze a group of active objects as a component. Also, we dlasseshat

active objects are instantiated from. Classes serve as templates for state, behavior, and the
access interface; adding reusability in both modeling and verification process. Our method
is supported by a front-end tool for the translation of Rebeca models into languages of
existing model checkers. In order to cope with the problem of the state space explosion
we propose a compositional verification approach which exploits the modular features of
Rebeca models and their decompositionality into components.

More specifically, the key features of this thesis are:

e using theactor-basedasynchronous event-driven model for the specification of reac-

tive systems;

e introducingcomponentas open (sub-)systems as a basis for compositional verifica-

tion;

e presenting #ormal semanticfor the model and components, comprising their states,
communications, state transitions, and the knowledge of accessible interfaces, which
provides a formal basis for proving the correctness of our abstraction and reduction

techniques;



¢ using differentabstraction techniquelsased on the computing paradigm of the lan-
guage which preserve a set of behavioral specifications in temporal logic, and which

reduce the state space of a model, making it more suitable for model checking;

e establishing the soundness of these abstraction techniques by proveskaimu-

lation relation between the constructs;

e enriching Rebeca with a formal concept of reusable components and an additional
communication mechanism based on synchronous message-passing, proposing ex-

tended Rebeca;

e presenting a tool for translating Rebeca models into target languages of existing

model checkers, enablimgodel checkingf actor-based models;

e modeling case studies in Rebeca and applyingcin@positional verificatiorap-

proach, using the specified abstraction techniques;

e providing compositional semantics of Rebeca, using the coordination language Reo
to model the coordination and communication between reactive objects, and Con-

straint Automata to model each reactive object.

In Figure 1.1, we summarize the language, verification approach, underlying theories,

and tool features, together with their relationships.
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1.2 Related Work

Verification techniques and corresponding tools have been developed for analyzing pro-
grams and models. Programs implementing real systems are usually too heavy and de-
tailed for applying formal verification approaches. Hence, different abstraction techniques
on both data and control are used to make the analysis process possible. On the other hand,
formal modeling languages may be too abstract or too mathematical and not easy to be
used by software engineers. Model checker tools, like SMV [1] and Spin [4], are devel-
oped with their own specific modeling languages which can be used directly for modeling
systems and verifying their properties. Their modeling languages are designed to be suit-
able for applying model checking techniques and are not based on a formal semantics nor
on a software development paradigm. They are sometimes used as back-end languages to
which modeling or programming languages are translated.

Rebeca is different, by providing a powerful yet simple paradigm based on actor model,
and an easy to use, java-like, object-based syntax for software engineers in modeling, and
also a naturally decomposable model and independent modules which can be exploited in

formal verification and model checking.



Modeling Languages Different languages have been proposed for modeling concurrent
and distributed systems at different levels of abstraction. These languages also vary with
respect to the formalization of their semantics and corresponding verification techniques,
and to what extent these formalizations are supported by tools.

Examples of languages which provide a high-level of abstraction aré 29P, CCS3[45,
46], 1/0 Automata [39], and RMtt [12]. RML is supported by the model checker Mocha [10];

and FDR® [49] is the proof and analysis tool for CSP.

Model Checking Existing Languages On the other hand, verification techniques and
corresponding tools have also been developed for existing programming languages. For ex-
ample, the NASA's Java PathFinder [27] is a translator from a subset of Java to Promela [4].
Its purpose is to establish a framework for verification and debugging of Java programs
based on model checking. The Bandera Tool Set [23] is an integrated collection of program
analysis, transformation, and visualization components designed to allow experimentation
with model-checking properties of Java source code. Bandera takes Java source code and
a specification written in Bandera’s temporal specification language as input, and it gen-

erates a program model and specification in the input language of one of several existing

2Communicating Sequential Processes
3Calculus of Communicating Systems
4Reactive Modules Language
SFailures/Divergences Refinement



model-checking tools. SLAM [3] is a Microsoft’s project for verification of C programs
and debugging software via static analysis. The tools mentioned here, in principle can be
applied directly to the verification of the actual implementation. However in practice such
verification is only possible after an application of certain abstraction techniques to both

the data and control [23].

Model Checkers Another approach is to use the language of a model checker itself in
modeling concurrent and distributed systems. Some of these tools are successfully used in
analyzing real systems, like NuSMV [1] and Spin. The NuSMV system is a tool for check-
ing finite state systems against specification in the temporal logic®ahd CTL’ [24].
Spin is a widely distributed software package that supports the formal verification of dis-
tributed systems. Spin uses a high level language to specify systems descriptions, called
Promela 8 and LTL is its specification langauge. However these languages are designed
for model checking purposes and their formal semantics are usually not explicitly given.
Using these tools also needs certain expertise.

Apart from the identification of suitable language characteristics which mainly concern

modeling issues like the level of abstraction, modularity and usability for practitioners, the

8Linear Temporal Logic
"Computational Tree Logic
8Pracess mea language



two main approaches in formal verification both have their own deficiencies: Model check-
ing in general suffers from the state-space explosion problem and deductive verification
techniques require a high expertise and intensive interaction with the underlying theorem
prover. In general, compositionality allows one to master both the complexity of the design
and verification of software models. Decomposing a model into sub-models, verifying the
properties of sub-models, and deducing the overall property is the main idea in composi-
tional verification methods. Compositional verification can be exploited effectively only

when the model is naturally decomposable [22].

Compositional Verification Compositional verification has been used in different ways
in the analysis of models of concurrency. Abadi and Lamport [35, 5] explained an approach
for composing specifications and verifying their properties. They used®EHsAheir mod-
eling language and also for describing properties, and applied assume-guarantee reasoning
for compositional verification. Clarke, Long and McMillan [18] used interface processes to
model the environment for a component. They modeled systems as finite transition systems
and used CTL to specify their properties.

Input-output automata for modeling asynchronous distributed systems are introduced

by Lynch and Tuttle [38, 39]. They showed how to construct modular and hierarchical

9Temporal Logic of Actions
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correctness proofs for their models. Kesten and Pnueli [33] mentioned modularization and
abstraction as the keys to practical formal verification, using fair Kripke structure as the
computational model for reactive systems and temporal logic as a requirement specifica-
tion language. An extension of bisimulation in a compositional proof of correctness of a
protocol is used by Larsen and Milner in [37]. Alur and Henzinger [12] proposed RML
for modeling a system and used a subset of linear temporal logic, alternating-time temporal
logic, to specify its properties. RML supports compositional design and verification. Its

compositional verification approach is assume-guarantee.

Actor Model Object-oriented models for concurrent systems have widely been proposed
since the 1980s [6, 16, 21]. Thaetor model was originally introduced by Hewitt [28]

as an agent-based language. It was later developed by Agha [6, 7, 8] into a concurrent
object-based model. The actor model is proposed as a model of concurrent computation in
distributed, open systems. Actors have encapsulated states and behavior; and are capable
of changing behavior, creating new actors, and redirecting communication links through
the exchange of actor identities. Valuable work has been done on formalizing the actor
model [8, 42, 59, 60, 26]. The actor model was first explained as a simple functional

model [6, 7, 8], but several imperative languages have also been developed based on it [48,
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64, 63]. Besides its theoretical basis, the actor model and languages provide a very useful

framework for understanding and developing open distributed systems.

Rebeca Inthe design of Rebeca both modeling and verification issues played a dominant
role. Object-oriented modeling can be considered as the most successful approach in mod-
eling in the software engineering community. The main motivation in designing Rebeca is
to provide an object-based language with clearly defined encapsulated units of concurrency
which can be easily used by software engineers. Furthermore, Rebeca provides a natural
modular design approach with loosely coupled modules which makes the model suitable
for applying compositional verification techniques.

To the best of author’'s knowledge, there is hardly any work on the tool-supported for-
mal verification of actors [56, 50]. In order to integrate the practice of software engineering
and formal verification, Rebeca provides a rigorous semantic basis for an imperative view
of actors. It is designed based on a powerful yet simple paradigm; providing the basic nec-
essary constructs in a Java-like syntax which is easy to use for practitioners. In this thesis
we show how to exploit the event-driven computation model of Rebeca in automated ab-

straction and compositional verification techniques which preserve L.axd ACTL!!

10LTL without next operator
Hyuniversal fragment of CTL
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properties.

A tool for translating Rebeca to SMV and Promela enables us to model check Rebeca
codes both in closed and open forms. We have used our tool to show that our composi-
tional verification approach reduces the state space in many practical cases [55]. A similar
approach in using abstraction technique for model checking 8Blystems is discussed

in [31].

1.3 Thesis Outline

Chapter 2 presents the modeling language Rebeca and its syntax and formal semantics for
Rebeca models. Model checking Rebeca models, compositional verification, and compo-
nents as open systems are explained in Chapter 3. Weak simulation, as an abstraction tech-
nique applied to Rebeca components, and the theorems used to formally justify our com-
positional verification approach are defined in this chapter. Chapter 4 explains the Rebeca
model enriched by reusable components and the additional communication mechanism of
synchronous message passing inside these components. In Chapter 5, we introduce our tool

for automatic translation of Rebeca models into existing model-checking languages, SMV

12gpecification and Description Language
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and Promela, and the capabilities of the tool to automatic abstraction and modular verifica-
tion of Rebeca models. Some case studies are presented in Chapter 6. Typical examples are
modeled in Rebeca, and are model checked by the tool. In some examples we show how we
can have a significant state space reduction using our compositional verification approach.
Chapter 7 shows the compositional semantics of Rebeca, using mapping of Rebeca to the
coordination language Reo and Constraint Automata. Chapter 8 concludes the thesis and

shows the direction of possible future work.



Chapter 2
Rebeca: The Modeling Language

2.1 Introduction

Rebeca Reactive Ohjeds Language [53, 56] is an actor-based language [28, 6] with a
formal foundation. It can be considered as a reference model for concurrent computation,
based on an operational interpretation of the actor model. It is also a platform for develop-
ing object-based concurrent systems in practice. Formal verification approaches are used
to ensure correctness of concurrent and distributed systems.

Rebeca is similar to the actor model in that it has independent active objects, asynchro-
nous message passing, unbounded buffers for messages, dynamically changing topology,
and dynamic creation of active objects. We add class declarations to the syntax; classes
act like templates for states, behavior, and interfaces of active objects. Also, we have the

notion of a component as a set of concurrently executing active objects, and the role of

14
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internal and external active objects differs from the one in the original actor model [6]. Our
components are sub-models which are the result of decomposing a closed model in order
to apply compositional verification, and should not be confused with the concept of com-
ponents in component-based modeling which are independent modules with well-defined
interfaces.

Our objects are reactive and self-contained. We call each of theimeg for reactive
object. Computation takes place by message passing and execution of the corresponding
methods (message server) of messages. Each message specifies a unique message serve
to be invoked when the message is to be serviced. Each rebec has an unbounded buffer,
called a queue (or inbox), for arriving messages. When a message at the head of a queue
of a rebec is serviced, its message server is invoked and the message is deleted from the
gueue. We may refer to the messages as 'method invocation requests’.

Each rebec is instantiated fromcdéassand has a single thread of execution. We define a
mode] representing a set of rebecs, as a closed system. It is composed of rebecs, which are
concurrently executed, and are interacting with each other. We can introdog@nents
as open systems, consisting of subsets of rebecs in a model.

The execution of a message server is triggered by removing its message from the top

of the queue and results in an atomic execution of its body which cannot be interleaved by
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any other method execution. Note that this coarse-grained granularity of the interleaving
of methods is compatible with the asynchronous nature of the communication of Rebeca,
which does not contain suspending communication primitives (e.g. a possibly suspending

receive state). It also reduces the state space and makes the model simpler.

2.2 Syntax

The syntax for reactive classes (reactive-object templates), rebecs (reactive class instan-
tiations), and models (parallel composition of rebecs) is presented in Figure 2.1. The
syntax of a<reactive class> definition is similar to Java, except for the definition of
<knownobjects> . The rebecs included in thd&nownobjects> part of a reactive class de-
finition, are those rebecs whose message servers may be called by instances of this reactive
class.

After declaring the known rebecs, a list of reactive class fields are declasstdtgvars>
part. Then the methods, which may themselves contain local variables, are defined as mes-
sage servers. Variables are typed, and method declarations follow a standard syntax. Unlike
Java, methods have no return mechanism and therefore no return type. The core language
for statements<statement> ) allows the remote method invocation requestsirt> ), as-

signments<assignment> ), if-statements<qconditional> ), object creationqcreate> ),
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and sequential composition.

In <mir> , after specifying the callee (receiver) id, the method name and actual parame-
ters are included. This can be viewed as a message consisting of the callee id, message id
and the parameters passed to the callee. Although not mentioned explicitly in the message,
the caller (sender) passes its rebec identity (self) to the callee (receiver). Caller and callee
may be the same rebec, modeling local calls (sends to self).

It is required that every reactive class definition has at least one method maitizd
In the initial state of the system, each rebec hamdial message in its message queue, so
initial is the first method executed by each rebec. After defining the reactive classes, there
is a keyworckmain> followed by the definition of the Rebeca model which is defined as a
finite collection of rebecs that are (created and then) run in parallel. In declaring a rebec,
the bindings to its known rebecs is specified in its parameter list.Variables are typed and
the variables denoting known objectareceiverof a message, andaeatedobject have
to be of typerebec identifier Rebec identifiers can be passed as parameters, but cannot be
referenced in aassignmentstatement.

We use Producer-Consumer as a simple running example through this chapter to show
the syntax and semantics of Rebeca. We start with a simple version and discuss different

features of Rebeca by extending this example.



<model> =

<reactiveclasses> ::= {<reactiveclass>}+ <reactiveclass> ::=

<knownobjects> ::=

<statevars> 1=

<body> ::=

<method> ::=

<parameters> ::=
<var> =
<statement> =
<mir> =
<create> =

<model> ::=

<rebec> ::=

<reactiveclasses>
<main>

reactiveclass <reactiveclassName>'('<queueLength>')’
<knownobjects>
<statevars>
<body>

—~3

knownobjects '{’
{<var>;}
y

statevars '{’
{<var>;}*

y

{<method>}+

msgsrv <methodName> (' {<parameters>} ') '{’
{<statement>;}*

¥

<var> | <var> ', <parameters>
<typeName> <varName>
<mir> | <assignment> | <conditional> | <create>

<varname> '’ <methodName> (' {<varname>}* ')’
<varname> = new <reactiveclassName> (' <knownobjectsBinding> ')’
main '{

{<rebec>;}+

¥

<reactiveclassName> <varname> (" <knownobjectsBinding> ')’

Figure 2.1: Reactive Class, Rebec and Model Definition Syntax

18



19

Example 1 (Producer-Consumer: a Rebeca modelYhere is a buffer in which a pro-

ducer puts its products and a consumer which takes the products from it. The producer
cannot put a product in a full buffer and a consumer cannot take a product from an empty
buffer. Also, the buffer is a critical section that both the producer and the consumer cannot

put and take the products in/of the buffer at the same time.

The system consists of reactive clasd®sftfer, Producer andConsumerthat are tem-
plates for defining a buffer, a producer, and a consumer (see Figure 2.2). The known rebecs
of the Buffer are the Producer and the Consumer, and the known rebec of the Producer and
the Consumer is only the Buffer. The Producer and the Consumer do not send messages to
each other directly.

State variables of each rebec are declared after the known objects. The rebec Buffer has
variables to show when the buffer is empty or full, whether the Producer or the Consumer
are waiting, the length of the buffer which is the number of elements in the buffer, and
pointers to the next empty and next full elements which the Producer puts the next product
in it and the Consumer takes the next product from it. The Producer and the Consumer
have no state variables.

State variables are followed by message servers. Each reactive class includes an ini-

tial method as explained earlier. The Buffer has two message servers provided to get the



reactiveclass BufferManager (4) {

knownobjects {
Producer producer;
Consumer consumer;

}

statevars {
boolean empty;
boolean full;
boolean producerWaiting;
boolean consumerWaiting;
int bufferCount;
int nextProduce;
int nextConsume;

}

msgsrv initial() {
bufferCount = 2;
empty = true;
full = false;

producerWaiting = false;
consumerWaiting = false;
nextProduce = 0;
nextConsume = 0;

}

msgsrv giveMeNextProduce () {
if (!full) {

producer.produce (nextProduce) ;
}
else {
producerWaiting = true;
}
}
msgsrv giveMeNextConsume () {
if (lempty) {
consumer.consume (nextConsume) ;
}
else {
consumerWaiting = true;

}

msgsrv ackProduce () {

nextProduce = (nextProduce + 1)
bufferCount;
if (nextProduce == nextConsume)

full = true;

}

empty = false;

if (consumerWaiting) {
consumer.consume (nextConsume) ;
consumerWaiting = false;

}

msgsrv ackConsume () {

nextConsume = (nextConsume + 1)
bufferCount;
if (nextConsume == nextProduce)

empty = true;

}

full = false;

if (producerWaiting) {
producer.produce (nextProduce) ;
producerWaiting = false;

{

{

reactiveclass Producer (2) {

knownobjects {
BufferManager bufferManager;
}
statevars {
}
msgsrv initial() {
self.beginProduce () ;

}

msgsrv produce (int bufNum) {
bufferManager.ackProduce () ;
self.beginProduce () ;

msgsrv beginProduce () {
bufferManager.giveMeNextProduce () ;
}
}

reactiveclass Consumer (2) {

knownobjects {

BufferManager bufferManager;
}
statevars {

}

msgsrv initial() {
self.beginConsume () ;

}

msgsrv consume (int bufNum) {
bufferManager.ackConsume () ;
self.beginConsume () ;

}

msgsrv beginConsume () {
bufferManager.giveMeNextConsume () ;

}
}

main {
BufferManager bufferManager (producer,
consumer) : () ;
Producer producer (bufferManager) : ();
Consumer consumer (bufferManager) : ();

Figure 2.2: Producer-Consumer Example
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requests of the Producer and Consumer. Two other message servers get the acknowledge-
ments of the Producer and Consumer and make the pointers and full/empty indicators up
to date.

The Producer have two message servers, the mdtegidProduceequires an empty
space in the Buffer by sendirggveMeNextProducmessage to the Buffer, and the method
Produceis called by the Buffer to provide the index of the empty element available for the
Producer to put its product. By executing the metRooducean acknowledgement is sent
to the Buffer and deginProducanessage is sent to self to repeat the cycle of production.
The body and behavior of the Consumer is similar to the Producer with the symmetric

message servers.

2.3 Semantics

The operational semantics of a reactive system can be defined as a labeled transition system.
Labeled transition system [41] is a quadruple of a set of st&gs(set of labelsL(), a
transition relation on state3 ], and a set of initial states of the systefg)(

To define operational semantics of Rebeca, we first formalize the definitions of a rebec,
a model, and their constituents (Figure 2.3). A rebgayith a unique identifier, is defined

as atriple< Vi, M;, K; >, whereV; is the set of its state variablad; is the set of its methods
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identifiers, and; is the set of all known rebecs of

For a Rebeca model, there is a universaliset all rebec identifierghat are involved
in the model, and a universal s&t of all known rebecsf all members off.

A messagensgis defined asmsg=< sendidi,mtdid >, where sendidis the identifier
of the sender is the identifier of the receiver, amdtdid denotes the method of receiver
ri which is called when the message is received. For the sake of simplicity, we ignore the
message parameters in our semantics definition.

U is the set of all possible values for all types of variables that can be defined in a
rebec,V; = {vlv: Vi — U} is the set of possible values for variables of rehend 1y =
Uielc Vi.

Each rebec has a queue which can be defined as a finite sequence of messages. We
denote the set of all finite sequences on a giverAsassedA). The mailbox of a com-
ponent is like a multi-queue consisting of all the queues of its rebecs and including all the
messages that have been sent from internal rebecs and have not yet been received.

Operational semantics of a Rebeca model is defined as a labeled transitionglystem
(SL,T,s), and is shown in Figure 2.4.

The state space of the model is
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e r; is arebec with the unique identifigrdefined as< Vi, M, K; >.
e V, is the set of state variables of the relec

e M is the set of methods identifiers of the rebec

e K; is the set of all known rebecs of

e ] isthe set of all rebecs identifiers.

o K= UicsKi is the set of known rebecs of all rebecs.

o M= |licsti is the set of rebecri|i € I} concurrently executing, making the closed mo@£] and
we haveVyr =Uie Vi, Mar =Uie /Mi, Kgp =Uie/Ki.

e msg=< sendidi,mtdid > is a message sent by the relsendidto call the methoantdid of rebec
i

e 9l is the set of all possible values for all types of variables that can be defined in a rebec.
o Vi ={v|v:Vi — U} is the set of possible valuations for variables of rebec
o Vyr ={v|v:V,,— U} is the set of possible valuations for variables of matiel

* Qar =liel,, sedlarxMi) is the set of possible states for the inbox of matiel defined as a multi4
gueue. Each queue is defined as a finite sequence of messages corresponding to an internal rebec as
the receiver.

Figure 2.3: Summary of Definitions

n

|1(S X Gi), (2.3.1)

where eacl§ is a model of the local state of rebgcconsisting of a valuation that maps
each local field variable to a value of the appropriate type; and the ighaxunbounded
buffer that stores all incoming messagewi(> ) for rebecr; in a FIFO manner.
The set of action labels is the set of alkmir> calls in the giverkmodel> ; such calls
record the processing of those messages that are part of the target rebec provided message
servers;

Atriple (s,1,8) € Sx L x Sis an element of the transition relatidniff
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Operational semantics of a mod#®l =||;.4fi is defined as a labeled transition syste®i, T, o)

e S=T]L,S x q is the set of states whe® =7/; x K;. ¥/; is the set of possible values for all th
variables of rebeg, K; is the set of known rebecs and known methods;pandg; is the set of
possible states for the message queue.

o L =Ujic;IxM,;is the set of labels, that are all possible messages that can be passed afdun
wherev(x,y,m) € L we havem € Kj.

e T C Sx L x Sis the set of transition relations on states, where
s1—' s eT,iff 51,5 € S andl = (x,y,m) € L is an enabled transition, which means
Jdie Inge Q|1 =heads;.q.i) ,i.e.,l is a message on top of the queue and
s, results froms; andl as follows:

— The message is popped frang, i.e.,.q.y :=tail (s1.9.y).
— Transition that is fired by message= (x,y,m) causes the methoah of the rebecy to be
executed as an atomic operation, in which:
x Execution of ordinary statements in may change the value of some variablesyo
(s1.v), and
* execution of eackendstatement inm, changes the message queyey.
x execution of eacltreatestatement irm expands the state spaBalynamically from

(Mio Se * Gie) X M1 S x G whereig is the created rebec.

e 5= VxQqistheinitial state of the model. Variables are initialized to their default values acco
to their types, an€) is defined such that the queue of each rebec with identifireludes only the

e

din

—

rding

messagéi, i, init;). It is obvious thaty € S

Figure 2.4: Operational Semantics of a Rebeca Model.
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e in states there is some (1 < i < n) such that is the first message in the inbay
| is of the form< sendidi,mtdid(vars) >, andsendidis the rebec identifier of the
requester (sender rebec, implicitly known by the receives)the rebec identifier of
ri (receiver rebec), anohtdid is the name of the methau of r; which is invoked,

together with its parametevsirs

e states results from stats through the atomic execution of two activities: first, rebec
ri deletes the first messaf&om its inboxg;, second, methorhis executed in state
s. The latter may add requests to rebecs’ inboxes , change the local state, and create

new rebecs;

e if new rebecs are created in the invocationnaf then the state spac®expands

dynamicallyfrom the one in (2.3.1) to

n

(17 (S i) < [](S @0, (2.3.2)

ineW |
whereinew ranges over the new rebecs created within that method invocatiosl and

is an element of (2.3.2);

Clearly, the execution of the above methods relies implicitly on a standard semantic for the
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imperative code in the body of methad Within such codegmir> requests may be is-
sued and rebecs may be created. In our semantics, messages (method invocation requests)
(<mir> ) are the sole mechanism for communication between rebecs. Regardinfyriite
behavior of our semantics, communication is assumed to be fair [6kmatt requests
eventually reach their respective inboxes and will eventually be invoked by the correspond-
ing rebec.

The initial states is the one where each rebec hasintsal message as the sole

element in its inbox.

Example 2 (Producer-Consumer: Initial state) In Example 1, in the initial state there
are a buffer, a producer and a consumer with their initial methods in their inboxes. So,
we have three enabled transitions. Execution of the initial methods may cause sending
messages to others or to self, and/or setting field variables.

In the initial method of the rebec Buffer instance variables are initialized; and in the
initial methods of the rebecs Producer and Consumer messages beginProduce and begin-

Consume are sent to self.

Example 3 (Producer-consumer: state transitions)Here we mention some of state tran-

sitions of the system.

o After execution of theitial method of the Producer, we have a beginProduce mes-
sage in its inbox. When the beginProduce message in the inbox of Producer is se-

lected to be served, it is popped from the inbox and its code is executed by sending
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the messages giveMeNextProduce to the Buffer. This message is added to the inbox

of the Buffer.

e Execution of giveMeNextProduce method by the Buffer depends on the state variable
full. If the full variable is false, it causes sending a Produce message to the Pro-
ducer, if thefull variable is true the state variablproducerWaitings changed to

true to show that the Producer is waiting for an empty place to put its product in.

Example 4 (Producer-Consumer: Dynamic creation and topology)Another version of
Producer-Consumer example is shown in Figure 2.5. In this example we show dynamic
creation of rebec Buffer, and dynamic changing topology. Unlike in Example 1, where
there is one instance of rebec Buffer, and a constant number of buffer elements available,
here we allow dynamic creation of instances of rebec Buffer. Each buffer has one buffer
element and a pointer to the next buffer. At the initial state one buffer is created, after
one production the producer makes the buffer element of this buffer full. Then, for the
next product another buffer is created. Buffer rebecs are like the nodes of a link list which
are created on demand. The rebec Consumer starts to consume from the first node and
moves forward in this link list. For the sake of simplicity, we do not model releasing of the
consumed nodes.

As shown in Figure 2.5, if a buffer is full and a Producer asks for a space by send-
ing readyToProduce, then a new buffer is created and its known objects are set to be the
Producer and Consumer. Then, the rebec id of this new rebec is sent to the Producer as
a parameter of the message setBuffer. Execution of the message server of setBuffer will
change the known object of the Producer to the Buffer which is newly created. This is an

example of dynamic changing topology.



reactiveclass Buffer (4) {
knownobjects {
Producer producer;
Consumer consumer;

}

statevars {
boolean empty;
boolean consumerWaiting;
Buffer nextBuffer;

}

msgsrv initial() {
empty = true;
consumerWaiting = false;
nextBuffer = null;

}

msgsrv readyToProduce () {

if (!full) {
producer.produce () ;

}

else {
nextBuffer = new Buffer (producer,
consumer) : () ;
producer.setBuffer (nextBuffer);

}

msgsrv readyToConsume () {
if (lempty) {
consumer.consume () ;
}
else if (nextBuffer != null) {
consumer.setBuffer (nextBuffer) ;
}
else {
consumerWaiting = true;
}
}

msgsrv ackProduce () {
empty = false;
if (consumerWaiting) {
consumer.consume () ;
consumerWaiting = false;

}
msgsrv ackConsume () {

empty = true;

}

reactiveclass Producer (2) {

knownobjects {
Buffer buffer;

}

statevars {

}

msgsrv initial() {
self.beginProduce () ;

}

msgsrv produce () {
buffer.ackProduce () ;
self.beginProduce () ;

}

msgsrv beginProduce () {
buffer.readyToProduce () ;

}

msgsrv setBuffer (Buffer b) {
buffer = b;
self.beginProduce () ;

}
reactiveclass Consumer (2) {

knownobjects {
Buffer buffer;

}

statevars {

}

msgsrv initial() {
self.beginConsume () ;
}

msgsrv consume () {
buffer.ackConsume () ;
self.beginConsume () ;

}

msgsrv beginConsume () {
buffer.readyToConsume () ;

}

msgsrv setBuffer (Buffer b) {
buffer = b;
self.beginProduce () ;

}

main {
Buffer buffer (producer, consumer):
Producer producer (buffer):();
Consumer consumer (buffer): ();

Figure 2.5: Producer-Consumer Example with Dynamic Behavior
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Chapter 3

Compositional Verification in Rebeca

3.1 Introduction

In formal verification we try to prove or disprove that a model satisfies some specifications.
There are two basic approaches to this analysis: model checking and deductive methods.
Typically, model checking is performed by an exhaustive simulation of the model on all
possible inputs. In this case, a software tool performs the analysis. In a deductive method,
the problem is formulated as proving a theorem in a mathematical proof system, and the
modeler attempts to construct the proof of the theorem (usually using a theorem prover as
an aid) [11].

One of the most important problems in model checking is the state-explosion problem.
Compositional verification is a way to tackle this problem. In compositional verification

the goal is to check properties of the components of a system and deduce global properties
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from these local properties. The main difficulty with this approach is that local properties
are often not preserved at the global level [18].

In compositional verification, the specification of a system is decomposed into the prop-
erties of its components which are then verified separately. If we deduce that the system
satisfies each local property, and show that the conjunction of the local properties implies
the overall specification, then we can conclude that the system satisfies this specification
too [36, 17, 44]. There has been a strong trend to use compositional approaches in formal

verification of systems [34, 58, 61, 56]. The closest approach to our work is [51].

An overview In its simplest form assume a system consists of two modelaad Q
which communicate with each other and also with their environment. We show this system
asP||Q. If ¢p is the specification dP (P |= ¢p) anddq is the specification o (Q = ¢g),

we would like to reason according to the following rule [43]:

P ¢p
QFE¢q

bpAGo= 0
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PIIQE=¢

As mentioned above, the local propetiy does not necessarily hold afteris com-
posed withQ. To use the above rule, the composed system should maintain inherent prop-
erties of its components. In other words compositiofP@ndQ should not alteipp and
¢q in the whole system.

In addition, a component of a system is typically designed to work only in the environ-
ment of that system. Thus, the modialoes not necessarily satisfy the useful property
that we need in an arbitrary environment. The reachable state sp&cm @iny possible
environment may in fact be much larger than the state spaPecofmposed withQ. This
is calledenvironment problemTwo possible solutions for this problem arempositional
minimizationandassume/guarantee reasoninip compositional minimization a reduced
version ofQ, sayQ', is derived that characterizes just the behavia@dfiat is visible toP.

Q' is called arinterface procesand models a reduced environment. The properfy| (&’
can also be stated fé1|Q. In assume/guarantee reasonidg,s specified and guaranteed

regarding some assumptions about the environment which have to be satisfjed by
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3.2 Model Checking Rebeca Models

For verifying the behavior of a model, we need a language to specify its properties. Tem-
poral logic and automata are alternatively used for this purpose. Here we choose temporal
logic as our property specification language. Model checking can only be applied on finite
systems, so we use abstraction techniques to make our model finite. Unbounded message
gueues, unbounded data types, and unbounded creation of rebecs are not allowed. Another
method for reducing the state space is the coarse grained granularity in the interleaving that
models the concurrency of the system. Each method is executed as an atomic operation.

Below, we describe these features in model checking Rebeca models in more detail.

Property specification language We use temporal logic as our property specification
language. Aemporal formuldas constructed out adtate formulagassertions) to which we

apply boolean connectives and temporal operators. State formulas are propositions defined
over standard operations and relations ovemwhereV = |Jic;Vi. We naturally do not
consider the message queue contents in our state formulas. So, the properties are based
on state variables of each rebec in the model. For model checking we abstract from the

dynamic rebec creation and dynamic changing topology and consider it as the future work.
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Bounded queues Finite-state model-checkers are not able to deal with infinite state space,
which is present in Rebeca due to the unboundedness of the inboxes’ capacity. Thus, we
need to impose an abstraction mechanism on our models: each rebec has a user-specified,
finite upper bound on the size of its inbox. The computation of the successos state
transition(s,1,s) is as before, except thdtequalss (stuttering step) if the requelstlid not

reach the filled-up inbox of the target.

Atomic execution of each method As we do not have any explicit receive statement in
Rebeca, and as we do not have any shared variable among rebecs, we can execute with-
out loss of generality a method atomically. More specifically, all generated messages can
be sent at the end of each method execution preserving the order. In general for model-
checking purposes we have to assume for each possible loop in a method a static given
upper bound of its iterations. Consequently a program with such loops can be compiled

into an equivalent program without loops.

A front-end tool for model checking For model checking Rebeca codes we developed
a tool which is explained in Section 5.2. Using this tool we can translate Rebeca codes to
SMV [1] or Promela [4] and model check it by existing model checkers. In these tools,

we have bounded data types, bounded message queues and in the future version a bounded
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number of rebec creation. Property specification language is based on the specification
languages of back-end model checkers: LTL and CTL. The execution of each method

is accomplished as an atomic operation. Message blocks are not implemented yet. An
ongoing project is developing another tool for generating the state space from Rebeca codes

and then model check it directly.

Example 5 (Producer-consumer: Model checking the codeYhe producer-consumer Re-
beca model in Figure 2.2 (with static behavior) is translated to SMV using our tool and
then it is model checked using NuSMV. The total state space generated by NuSMV includes
2.14el4 states and the reachable state &&4 states. The safety properties:
O!(buf ferfull Abuf ferempty and
O('buf ferempty\lbuf ferfull) —

I(buf fernextProduce= buf fernextConsume

are checked and are both true.

3.3 Compositional Verification in Rebeca: Components

In general, compositional verification may be exploited more effectively when the model
is naturally decomposable [22]. In particular, a model consisting of inherently indepen-
dent modules is suitable for compositional verification. Our actor-based model provides
such independent modules because of the asynchronous communication mechanism which

involve only an explicit non-blocking send operation.
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Decomposition into components In Rebeca, for verification purposes we ngcom-

posea closed model and think of one part as a component which is an open system and the
remainder as the environment that makes the overall system closed. This de-composition,
determines which rebecs in the model have to be modeled with state and behavior (the
component) and which rebecs may be abstracted such that thegemdynessages (the

environment).

Modeling environment Since environment rebecs never execute their own methods, there
is no need to model their inboxes, state, or behaviors. In a Rebeca component model, we

call environment rebeasxternaland all other rebedsternal.

Abstracting environment This de-composition process abstracts the model consider-
ably: only internal rebecs are fully modeled; external rebecs are only modeled in their
capacity to request remote method invocations (sending messages). So, they are only mod-
eled as the set of external messages that can be sent by them. This set of external messages

represent the environment for the component.

Abstracting the queues from external messagesinstead of putting external messages

in an internal’s inbox, they may be processed at any time, up to fair interleaving with the
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processing of requests in the inbox. This makes the model checking more efficient. For-
mally the behavior of the environment of a component is modeled by additional transitions
which describe its messages sent to the component. In other words with respect to the ex-
ternal environment, a component behaves like an I/O automata [39], where inputs from the

environment are always enabled.

External messages attached to componentsExternal messages coming into the compo-
nent are present in all the states and we can imagine that they are like the members of a set
that is constantly attached to all the states in the corresponding labeled transition system.
In this way we abstract from buffering the external messages, and we do not need to have
a special rebec or component modeling an environment. The environment of each compo-
nent is modeled as extra transitions, added to operational semantics of a component. It is
shown in the definition of the set of transition relations in the labeled transition system of

Figure 3.2.

Abstracting from parameters and dynamic topology For the sake of simplicity, we
abstracted the method definitions from their parameters. Methods with variables which
range over finite data types as parameters, can be modeled as multiple methods with no

parameters. Consequently, assuming a statically given a priori upper bound to the number
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of created objects we can model a restricted form of dynamic topology.

Dynamic creation of rebecs In the compositional verification approach, the behavior

of internal rebecs of a component is fully modeled without any abstraction. So, dynamic
creation of internal rebecs can be also modeled naturally. By abstracting the environment
we model it with a constant set of external messages. If we assume an environment which

is dynamically changed by creation of new rebecs, then the set of external messages can be
considered as a constant set only if the behavior of internal rebecs does not depend on the
sender of a message. As the set of active classes is a constant, and new rebecs are created
from this constant set of active classes we can still model the environment as a constant set
of external messages.

If in the code of a rebec, there is an explicit reference to the sender of a message then the
behavior of the receiver depends on the sender of the message and our abstraction no more
preserves the original behavior. For the sake of simplicity, in the definition of operational
semantics of a component (Figure 3.2), we do not consider dynamic creation of rebecs (nor

internal and external).

Deciding on how to decompose Internal rebecs constitute the “focus” of a particular

analysis. Determination of such a focus may often be the result of intuition and experience
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with similar patterns of open systems and depends on the properties which have to be
proved. It is the responsibility of the modeler and cannot be fully automated, although
some work has been done in automating this process and eliminating user guidance [9].
There is no general approach in decomposing the system in components, components have
to be selected carefully to lead to a smaller state space [36]. In many cases, specially when

there is symmetry in the model, we can reduce the state space significantly.

Composing two components With the decomposition technique the universe of rebecs
is always known. The active classes in the closed system designates this set. Given a model
as the universe of rebecs, any (finite) subset thereof can be the set of internal rebecs of some
Rebeca component. Given two such components, we are able to compose them into another
component. The resulting component is the union of internal rebecs of the constituents.
Internal and external messages can be obtained knowing the universe of rebecs and internal
rebecs. Note that decomposing a given close model is different from composing open
components which are defined in an unknown environment.

The definitions for components are formalized in Figure 3.1 and operational semantics
of a component is summarized in Figure 3.2 [53].

Example 6 (A component in a Rebeca model)n our producer-consumer example with

no dynamic behavior (Figure 2.2), we can take rebla$ fer and produceras an open
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e C=|licicli is a set of rebecsri|i € Ic} concurrently executing, and we have = Uieic Vis Mc =
Uieic Mi, Ke = Uiel Ki-

e |Ic C Iis the set of identifiers of internal rebecs@f

e C=|,Ci is the parallel composition af component<;,i = 1,...,n, and we havéc = UL, Ic,
Ve = UiL1 Ve, Mc = UL Mg, Ke = UL K-

e 1¢ ={vlv:Vc — U} is the set of possible valuations for variables of compofent

e Qc = [Mieie S€qlc x M) is the set of possible states for the inbox of compor@ndefined as g
multi-queue. Each queue is defined as a finite sequence of messages corresponding to arj
rebec as the receiver.

Figure 3.1: Summary of Definitions for Components

Operational semantics of a componeént ||ici.ri is defined as a labeled transition syst&®s, Lc, Te, ;)

e S =T, S xq is the set of component states wh&e-7; x K;. ¥} is the set of possible value
for all the variables of rebei¢ K| is the set of known rebecs and known methods ;odindg; is the
set of possible states for the message queue.

e Lc = Uje. IxMj is the set of labels, that are all possible messagé€s wherev(x,y,m) € Lc we
havem € K.

e Tc C & x Lc x & is the set of transition relations on states, where
s1— e Te, iff 51,5 € S, andl = (x,y,m) € Lc is an enabled transition, which means
JdiclcAge € Qc |1 =heads:.qc.i) ,i.e.,l is an internal message on top of the queukxé Ic ,
i.e.,| is an external message; and
s, results froms; andl as follows:

— If x e I then the message is popped freqrgc, i.e.,5.0c.Y ;= tail (51.0c.y), otherwises;.qc
does not change.

— Transition that is fired by messadie= (x,y,m) causes the methoah of the rebecy to be
executed as an atomic operation, in which:

x Execution of ordinary statements im may change the value of some variablesyo
(s1-Vc), and

x execution of eackendstatement imm,
if it is a send to an internal rebec, changes the message Guex®(
otherwise it has no effect on the state.

—+

internal

o ¢, = U xQq, is the initial state of the component. Variables are initialized to their default values

according to their types, anQc, is defined such that the queue of each rebec with identif
includes only the messaggi, init;). It is obvious thatc, € <.

Figure 3.2: Operational Semantics of a Component.

er
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component, and the consumer as environment. This component can be derimtéddol
producer The external messages coming to the component are ackConsume and giveMeNext!
sume messages from the consumer to the buffer. We assume these messages are always

enabled.

Example 7 (Composition of components in a Rebeca modelj we compose two com-
ponentsu f fer|producerandbuf fer|consumerwe will havebu f fer|producet|
consumerlt is the union of internal rebecs which made a closed system here. Internal and

external messages can be obtained knowing the universe of rebecs and internal rebecs.

3.4 Formal Justifications

The state explosion problem may be avoided by using techniques that replace a large com-
ponent by a smaller component which satisfies the same properties. We need a notion of
equivalence or preorder among structures guaranteeing that two components satisfy the
same set of formulas in a given logic or that certain properties are preserved.

A simulation relates a component to an abstraction of that component. Because the
abstraction can hide some of the details of the original structure, it might have a smaller set
of state variables. The simulation guarantees that every observable behavior of a component
is also a behavior of its abstraction. However, the abstraction might have behaviors that are

not possible in the original component.
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Weak simulation and property preservation Now, we explain the weak simulation re-
lation among components in our model. Here, the model is simplified by ignoring dynamic
creation and dynamic topology. Therefore, referring to the operational semantics of mod-
els in Section 2.3, the state spaBavon’'t expand dynamically from formula (2.3.1) to
formula (2.3.2).

As explained before, external messages coming into the component are present in all
the states and we can imagine that they are like the members of a set that is constantly
attached to all the states in the corresponding labeled transition system. So, in each state,
we have a set of variables, a message (multi-)queue, and also a set of external messages.
Because the set of external messages is constant in all states, we do not need to consider it
in each state.

To define the weak simulation relation between two components, we use the operational
semantics definition in Section 2.3 and the component definition in this section, and the
following notation. A componen€ is a set of rebecs, the set of identifiers of internal
rebecs ofC is denoted bylc and its state by:. The set of valuations for variables of
componentC in statesc is denoted bysc.7¢. The inbox of componer€ is defined as a
multi-queue, each queue is defined as a finite sequence of messages corresponding to an

internal rebec as the receiver. The multi-queue of compao@entstates: is denoted by
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Sc-ge- As explained in Section 2.3, a label is a message of the foisendidi, mtdid >,
wheresendidis the identifier of the sender rebeds the identifier of the receiver rebec,
andmtdid designates the method iofo be executed.

We also define a projection relation between two states. Statea projection of state
s (denoted byse T ), if (1) Icr C Ic; (2) the variables of their common rebecs have the
same values, i.esc. Vo C sc.¢; and (3) the multi-queus:.qc is a projection ofc.qc.

The multi-queusey is a projection of the multi-queugc (denoted byge T qc), if
lcr C Ic and for each € I the sequence of messagesendidi, mtdid > in gc, ignoring
messages witeendide Ic — I, is the same as the sequence of messaggs.in

With this terminology, we now define the weak simulation relation.

Definition 1. (Weak simulation)Given two component€ andC’ of a given model, rep-
resented by labeled transition systeffis, Tc,So.) With signature of action labelsc and

(&, Ter, S0 ) With signature of action labelsc, such thate C lc:

1. ArelationH C & x & is a weak simulation relation betwe€mandC’ if and only

if forall sc € &, 50 € &, if H(sc, ), then the following conditions hold:

(@) o 1 -

(b) for every statec, and label € Lc such thaisc,|,s,) € Tc, there is a statg,
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with the property thasc, = s (if | ¢ L) or (sC/,I,sC/l) € To (if | € L) and

H(sc,,scy)-

2. We say thaC’ weakly simulate€ (denoted byC < C') if there exists a weak simu-

lation relationH betweerC andC’ such thaH (sc;, s¢y)-

Next we introduce a theory which provides a formal justification of our compositional

verification technique of a component-based model. This theory consists of two theorems,
one theorem which semantically characterizes the behavior of a component in the context
of a given closed model in terms of the above weak simulation relation, and a general
theorem which provides the semantic characterization of the logic in terms of the weak

simulation relation.

Theorem 1 (Weak simulation relation between a component and its composition with
another arbitrary componentfor any two components’ andX of a model (defined on

the same universal set of rebed3)weakly simulate€ = C'||X.

proof. ConsideH = {(s¢c,s¢/) € & X X | s T ¢} We have to show (1) th&t is a weak

simulation and (2H (sc;,S¢;)-

1. To show thaH is a weak simulation:
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() s T scis in the definition oH.
(b) For the second condition, let(sc,sc) andl € Lc such thatsc,l, ;) € Te.

i. If | ¢ Lo thensy stays unchanged, i.&g, = S and we still haved (sc,, s¢/, ).
Butl ¢ Lo means that is a message to rebecs in the componénte.,
| = (p,r,m), r €lx, r ¢ lc. In this casenwill be executed and so the vari-
ables ofC’ (V) remain unchanged, and also messages that may be sent by
mare not put into the multi-queue 6f. Thus,go won't be changed either
and thereforéd (sc;, ¢, )-

ii. If €Ly, itmeansthat € lc, whenl = (p,r,m). We have to show that
is enabled irs~/, and then also show tha@l | s,. First, we show thaltis
enabled insz in all the possible conditions:

e | is external for bottC andC’. We know thatc C Ic, sol: C I, and
the set of external messagesXe a subset of external message€to
Thus,l is enabled irs.

e | is internal forC and external foC’. It means that is a message
coming from a rebec iiX, e.g.,p € X. Whenl is an external message
for C', it is always enabled in all states, so it is enableghin

e | isinternal for bothC andC’. We know thaH (sc, /), sos T sc and
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alsogcr T gc. From the definition of projection we know thatlifs on
the top of the queue igz, it has to be on the top of the queue &y

too. Thus] is enabled irsc:.

Second, we prove thag; T <, is the same for all three cases.

e execution ofm causes the same changes on variables of both compo-
nents (just the variables ir); and

e it may send some messages to rebeds jirausing the same changes
in both queues of: ands; or it may send messages to rebecs in

X, making S;-Go to be different fromsc,.qc but still guaranteeing

Oc T 0c and sosc; T <c;-

2. Now we show thaky T sc,. This follows from the definition of the initial state in
the operational semantics of componersts;. 7« C s¢,.7¢; furthermore s; .00 1

Sc,-Oc, because there are only init messages in both of them.

Definition 2. (Satisfaction relation)A computation of a componef is a maximal exe-
cution path beginning at the initial state. Given an LTL formglave say thaC |~ @iff @

holds for all computations dZ.
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We have the following theorem which restricts the corresponding theorem of Clark et

al [17] to safety properties.

Theorem 2 (Property preservation)f C’' weakly simulate€, then for every safety prop-
erty specified by an LTL-X formulg (LTL without the next operator), with atomic propo-

sitions on variables i€’, C' = @impliesC = @.

Compositional verification Using Theorem 2 we have the following corollary for com-
positional verification of LTL-X safety propertieRR = ||, X; is the parallel composition

of ncomponents,i = 1,....,n and we havég = i Ix.

Corollary 1. (Compositional verification)Let R= ||, X; and¢x, be a safety property of
X; specified in LTL-X. In order to show thdir is a property of systerR, it suffices to find

properties for eacl;, such that,

1. Fori=1,...,n, ¢y is a property ofX;, and

2. (A 0x) = dris valid.

We can prove for=1,...,n , X = ¢x by model checking. After that ifA] ; dx) = dr

thendr is a property oR.
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There are no conditions on selected components. But, obviously it is better to put
highly interacting rebecs in a component. It would also be better to select loosely coupled
components for model checking in order to decrease the number of external messages.
Sometimes, we need to share some rebecs between some components. Theorem 2 holds in
this situation too. Hence, we can use Corollary 1.

Sometimes a system consists of similar components in which case we can use a kind of
generalization. We say two components are similar when they consist of the same number
of rebecs and for each rebec in one there is a corresponding rebec in the other component,
and both rebecs are instantiated from the same class. Since all instances of a class have sim-
ilar properties, so have all similar components. The modeler chooses a component which
its parallel composition with a number of other similar ones makes up the total system.
S/he verifies the property of this component by model checking and it is generalized to

other similar ones. Then, the rest is done by using Corollary 1.

Example 8 (Producer-consumer: verification of a property using abstraction) The crit-
ical section in producer/consumer example is the buffer which is a shared object. The sys-
tem safety requirement is that at any given time the producer and consumer do not access

the buffer simultaneously. It is specified in LTL-X as follows:

dsys= O('buf ferManageempty\!buf ferManagerfull) —
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l(buf ferManagenextProduce= buf ferManagenextConsume

Here, the property of the system is localized to a property of one rebebuthieerManager

So, we can pick thbuf ferManageras the component and the rest of the system as its
environment. The desired property is proven by model checking and shows that the sys-
tem satisfies its safety requirement. The reachable states generated by NuSMV in model
checking this example, consisting of one producer and two consun&98s Using our
compositional verification approach and assuming I ferManageras a component

the reachable states will reduce 8562 By increasing the number of consumers to four

we have817 million reachable states for the closed world model d%930 reachable

states using compositional verification approach.

In Example 8, we only use Theorem 1 and Theorem 2 to prove the property of the
system by model checking a component. The following example shows how we need to

use also Corollary 1 in order to prove the desired property.

3.5 An Example: Dining Philosophers

We use Rebeca to model the dining philosophers example. This system is discussed in
various texts [29, 49, 33] and can serve as a simple example for showing how to use our

method.
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A Rebeca model There aren philosophers at a round table. To the left of each philoso-
pher there is a fork, but s/lhe needs two forks to eat. Of course only one philosopher can
use a fork at a time. If the other philosopher wants it, s/he just has to wait until the fork
is available again. Figure 3.3 shows a solution for the dining philosophers problem, with
n =4, coded in Rebeca.

The system consists ofRhilosopherclass that is a template for defining philosophers
and aFork class that is a template for forks (see Figure 3.3). Our model consists of four
philosophers and four forks. The known rebecs of each philosopher are its left and right

forks, and known rebecs of each fork are its left and right philosophers.

Some state transitions

¢ In the dining philosophers example, in the initial state there are four philosophers
and four forks with theiinit methods in their inboxes. So, we have eight enabled
transitions. Execution of thimit methods may cause sending messages to others or

to self and/or setting field variables.

o After execution of thénit method ofPhils2, we have arrrive message in its inbox.
When theArrive message in inbox d?hils2 is selected to be served, itis popped from

inbox and its code is executed by sending three messadgesgaesto Fork2, a



class Philosopher:(Forkl,Forkr:Fork) {
interface:
Permit();

body:
boolean eating;
boolean FL, FR;

Arrive() {
send (Forkl, Request());
send (Forkr, Request());
send (self, Eat();
}
Permit() {
if (sender == Forkl)
FL = true;
else
FR = true;
}
Eat() {
if (FL && FR) {
eating = true;
send (self, Leave());
} else {
send (self, Eat());
}
}

Leave() {
FL = false;
FR = false;
eating = false;
send (Forkl,Release());
send (Forkr,Release());
send (self, Arrive());
}
init() {
FL = false;
FR = false;
eating = false;
send (self, Arrive());

50

class Fork:(Phill,Philr:Philosopher) {
interface:
Request();
Release();
body:
boolean busy;
boolean requester;

Request() {
if (sender <> self) {
if (sender == Phill) requester = true;
} else requester = false;
if (busy) {
send(self,Request());
} else {
busy = true;
if (requester) send (Phill,Permit());
else send (Philr,Permit());

}
}
Release() {
busy = false;
}
init() {
busy = false;
}
}
rebecs:

Phils0:Philosopher(Forks0,Forks1);
Phils1:Philosopher(Forks1,Forks2);
Phils2:Philosopher(Forks2,Forks3);
Phils3:Philosopher(Forks3,Forks0);
Forks0:Fork(Philo,Phil3);
ForksZ:Fork(Phil1,Phil0);
Forks2:Fork(Phil2,Phill);
Forks3:Fork(Phil3,Phil2);

model = || ( PhilsO, Philsl, Phils2, Phils3,
Forks0, Forksl, Forks2, Forks3);

Figure 3.3: Dining Philosophers Example
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Requesto Forks3, and arEat to itself. Thesemethod invocation requestse added

to corresponding inboxes.

A component in a Rebeca model In our dining philosophers example we can take rebecs
PhilsO, Forksl and Philsl as an open component, and other rebecs as the environment.
This component can be denoted BlilsO|| Forksl|| Philsl. The only external messages
coming to the component aRermit messages frorkork0 to PhilsO and fromForks2 to

Philsl. We assume these messages are always enabled.

Composition of components in a Rebeca model If we compose two componerighil 0| |
Forksl||Philsl andPhilsl||Forks2||Phils2, we will havePhilsO||Forksl||Philsl||Forks2||Phils2.
It is the union of internal rebecs. Internal and external messages can be obtained knowing

the universe of rebecs and internal rebecs.

Compositional verification of mutual exclusion property The system safety require-
ment is that at any given time two neighboring philosophers cannot both hold the fork
between them. It is specified in LTL-X as follows denotes addition in mod, andn is 4

in our example):
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dsys= O(AMg —(Phils.FRAPhilsg1.FL))

According to the above property as the system property to be proved, we decide how to
decompose the system. We want to deduce the system propggyfrom the properties
of the components. So, we considilsO||Philsl||Forksl as a component and prove the

following property by model checking:

G philsol|Forkst|[Philst = C(—(PhilsO.FRA PhilsL.FL))

This property is proven by model checking using our tool. The tool can automatically
generate the abstract model of the component out of the closed model and then translate it
to SMV. The SMV code is then model checked by NuSMV model checker. Considering
four similar component®hils ||[Forksg1||Philss1,i = 0,...,4 (with a shared philosopher

between each pair of overlapping components), we have:

Gphils |[Forks.q/|Phils.. = D(—(Phils.FRAPhilsg:.FL))

and then using deduction we can easily prove that:
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n-1
Ni—o Prhils||Forksaa|[Philser = Psys

By Corollary 1, in order to show thasysis a property ofys it suffices to find valid
properties for each component such that conjunction of these properties yigpdgs to

Thus, by what we showed above, we can concludedtfiais a property oSys

Using deduction to prove the mutual exclusion property In this example it is obvious
that the following formula holds:

O(—(Phils0.FRA Philsl.FL) A O(=(PhilsL.FRA Phils2.F L) A

O(—(Phils2.FRA Phils3.FL) A O(—~(Phils3.FRA Phils0.FL)) =

O(—(PhilsO.FRA Philsl.FL) A =(Philsl.FRA Phils2.FL) A

~(Phils2.FRA Phils3.FL) A —(Phils3.FRA Phils0.FL))

This will satisfy condition 2 of Corollary 1. In this case, proving this formula is an easy
deduction in linear temporal logic. But for proving more complicated formulas, automated

theorem provers can be used.



Chapter 4

Extended Rebeca

4.1 Introduction

A model in Rebeca consists of a setrebes ! which are concurrently executed. Rebecs

are encapsulated active objects, with no shared variables. Each rebec is instantiated from
a classand has a single thread of execution which is triggered by reading messages from
an unbounded queue. Each message specifies a uniqgue method to be invoked when the
message is serviced. When a message is read from the queue, its method is invoked and
the message is deleted from the queue. Note that reading messages, thus, drives the com-
putation of a rebec. Rebecs do not provide an explicit control over the message queue.
In kernel Rebeca (before extension), active objects communicate only via asynchronous
message passing. Because of this asynchronous communication mechanism, with only an

asynchronous send operation and no explicit receive operation, methods can be executed

lreactive objedt

54
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atomically. Dynamic changing topology and dynamic rebec creation is defined in formal
semantics of Rebeca.

We exploited the specific features of this actor-based model of computation in a com-
positional verification technique for model-checking safety properties [56]. In this chapter,
we enrich the actor-based model of computation with a formal concept of components.
Components encapsulate their internal structure which is given by a set of rebecs. The
methods of these rebecs however provide an additional communication mechanism based
on synchronous message-passing. The interaction between the rebecs of a component is
encapsulated. The concept of components in this chapter shouldn’t be confused by what we
introduced in Chapter 3. Here, components are no more sub-models which are the result of
decomposing a closed model in order to apply compositional verification. Components in
this chapter, present independent modules with well-defined interfaces which can be used
in modeling as well as verification.

The motivation is to provide a general framework which integrates in a formally con-
sistent manner, both synchrony and asynchrony. We introduce components for integrating
different communication patterns (synchronous and asynchronous), at different levels of

abstraction. At the highest level of abstraction, components only interact asynchronously
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via broadcasting anonymous messages. At a lower level of abstraction (within a compo-
nent), computations, on the one hand are driven by asynchronous messages, and on the
other hand can be synchronized by a handshaking communication mechanism.

The external observable behavior of a component is described by an interface. This
interface specifies a set of provided and required message signatures which is the union of
provided and required messages of internal rebecs. These signatures specify the message
name and the types of its parameters. In order to enforce encapsulation, we do not allow
a rebec class as a parameter-type. A rebec of a component can only send instances of the
required message signatures. These messages will be broadcasted to all the other compo-
nents of the system. On the other hand, upon receiving a message from environment, a
component will broadcast the instances of the provided massage signatures to all internal
rebecs. Each internal rebec of the component will store these provided messages in its

message queue, only if the service is offered by it.

4.2 Syntax

Rebeca is a class-based language in which classes are templates for instantiating rebecs
with specified interfaces, instance variables, and method definitions. Variables are strongly

typed. In order to increase the modeling power of actor-based languages, we extend the
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asynchronous communication mechanism of Rebeca with synchronous message passing
and a mechanism for broadcasting anonymous messages. Synchronous messages are spec:
ified only as a signature specifying the name of the message and the types of its parameters.

For sending a synchronous or asynchronous message to an internal rebec, we specify
its name. An anonymous send statement represents a broadcast to other components. In
order to introduce the extended version of Rebeca we need the following definition.

Definition 1 (Basic definitions) .

The predefined typeB: Int for integersBoolfor Booleans, an&ebfor rebec names,

i.e., identities of the active object in Rebeca.

The setVar is the set of variables of typ& with typical elements«,Xo, ..., Xn,
including instance variables and also local variables. We show local variables by

Ui, ...,Un, values by, ..., vy, and rebec names boyr’, . . ..

The setval is the union of all the values for all the types, i.e., all the values for type

Int, {True False} for type Bool, and all the rebec names for typeb

The setMesis the set of messages with typical elementay, ..., m,.

A model in rebeca is a number of class definitions followed by rebecs instantiated from

them. Components are declared as sets of rebecs. Each class, consists of an interface,
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declaration of instance variables and its body which is a set of method definitions. The
following describes the syntax of the basic actions, and the methods in Rebeca. In the fol-
lowing definition,a shows the basic actions, aAdtands for a name of a class (sometimes
refer to as rebec template.is the body of a method that includes local variable declara-
tions and a sequential statement composed of the basic actions. A method defmition,

consists of a method signature and method b&)ly (

Definition 2 (Syntax of extended Rebeca)

The basic actions, and the methods in Rebeca are defined by the following BNF-grammar

(we abstract from the syntax of expressiensind brackets[[) show the optional parts).

ar= Xx=e | x=newA) | [x]Jm(e,...,en) | receivémy,...,my)
S:= &S| a

mtd::= m(uy:ty,...,un:ty)[: §

An assignmenstatementx = e, assigns the value resulting from the evaluation of the
expressiore to variablex. A createstatemenix = newA), creates a new rebec as an
instance of clasé and assigns its unique identity to the variaklé classA, is a template
that rebecs are instantiated from.

A sendstatement, can be sending a message to a rebec, specifying its name; or it can be
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an anonymous send. An anonymaesdstatementn(e, ..., ey), which does not indicate
the name of the receiver, causes an asynchronous broadcast of the nmesgtgactual
parameter®; to e,. This broadcast in fact will involve all the components of the system
as described in the following section on components. In the lower level, this in turn, will
cause sending an asynchronous message to all the rebecs of a component.

Execution of asendstatementy.m(ey,...,ey), consists of sending a messagewith
actual parameterg; to e, to the rebea. Message passing can be both synchronous as
well as asynchronous. Asynchronous messages define a corresponding message-handler
S also called a method, and there is no explicit receive statement for them. An asynchro-
nous message will be stored in unbounded message queue of the callee, after which the
caller proceeds with its own computation. When this message is read by the callee the
corresponding statement is executed.

Synchronous messages are specified only in terms of their signature, they do not spec-
ify a corresponding handle&3. Synchronous message passing involves a ‘hand-shake’ be-
tween the execution of a send-statement by the caller and a receive statement by the callee
in which the (synchronous) message name specified by the caller is includexteite
statementreceivémy, ..., my), denotes a nondeterministic choice between receiving mes-

sagesm to m,. This kind of synchronous message passing is a two-way blocking, one-way
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addressing, and one-way data passing communication. It means that both sender and re-
ceiver should wait at the rendezvous point, only sender specifies the name of the receiver,
and data is passed from sender to receiver.

The body of each metho&, is a sequential statement composed of the basic actions.
A method definitionmtd, defined asn(uy : t1,...,un : ty) : [§, denotes the method that
is correspondent to messagewith virtual parameteu; to u, of typet; to t,, and the
body S The definition of method bod$ is optional, and we have the convention that
m(up i tg,...,un : ty) : Scorresponds to an asynchronous messagemguag: ti, ..., Uy : ty)

corresponds to a synchronous message.

4.3 Semantics of Rebecs

We will define the semantics of extended Rebeca in terms of a labeled transition system.
Semantics is defined in a structured manner which reflects the hierarchy of rebecs,
component and component system: First we introduce a labelled transition system which
describes the behavior of a rebec in isolation. This transition system forms the basis for a
labelled transition system which describes the behavior of a component as a set of rebecs.
Finally, the latter system is used as a basis for describing the overall behavior of a system

of components
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Definition 3 (Local configuration)

Assuming a model with rebec template definitioAs:= Bs,...,A, = By, whereB; is the
body of the class, rebecs are instantiated from these templates. A local configlfation

arebec is defined as a tuple-< r,0,S q > where

¢ 1 denotes the rebec identity,

e 0 € Var — Val assigns values to the variables of the rebec,

e Sis the statement to be executed next, and

e (g denotes the unbounded FIFO queue containing asynchronous messages.

Next, we introduce a labelled transition relation which describes the behavior of a rebec in

isolation. The labels indicate the nature of the transition:

¢ the labelt indicates an internal computation step;

e alabelm(vy,...,Vv,) indicates that the asynchronous messag®, ..., v,) has been

broadcasted;

e alabelr.m(vy,...,vy) indicates that the asynchronous or synchronous message . ., vn)
has been sent to the rebe@which is required to be different from the executing re-

bec);
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e alabelr.m(vy,...,vn), Wwherer denotes the executing rebec itself, indicates the recep-

tion of the message(vy,...,Vn).

For notational convenience, the parameters of a message are dropped in the following de-
finitions when it does not cause loss of information, &y, ...,Vn) is shown simply by

m.

Definition 4 (Local transition for processing message queue)

When the point of control is at the end of a method, its execution is finished which is
denoted bynil. If there is a message at the top of the rebec’s queue it is popped and the
corresponding method is called for execution. The parameter values are substituted before
execution. It is worthwhile to observe here that we don’t have recursion in methods so we
don’t need to worry about fresh local variables. The above is formalized by the following

transition:(r,a, nil,g.m(v1,...,Vvy)) 5 (r,d’,Sq)

where, given the method definitiam(us : tg,...,un : th) © S, 0’ = o{v1/u1,..., Vn/Un}
denotes the state resulting from assigning the vales.,v, to the formal parameters

ui,...,Un. Note thato{v/u} denotes the result of assigning the valtte u in the stateo.
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Definition 5 (Local transition for assignment)

When the next statement to be executed is an assignment we have the following transition

rule:

(ro,x=eSq) ~ (1,0’,S0),
whered’ = o{a(e)/x} ando(e) denotes the value of expressiem o.

Definition 6 (Local transitions for send)

When the next statement to be executed is a send statement we distinguish between broad-

cast, sending to self, and sending to others :

e (no,mer,....e);Sa) ™2 (r,0,S )
wherev = (v1,...,Vp), andy; = o(g).

(7<

e (ro,xm(ey,....en);Sq) — (r,0,S0)

wherea(x) =1, r #r1/,v=(v1,...,Vy), andv; = a(g).
e (r,0,x.m(eg &);Sq) — (r,0,S.0.m(Vi,...,Vn))
wherea(x) =r, andv; = o(g).

The first case above describes the anonymous broadcast of an asynchronous message.

The second case describes sending a synchronous or asynchronous message to another
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rebec. Finally, the last case describes sending of an asynchronous message to the rebec
itself. Note that we do not allow sending synchronous messages to self, which will cause
deadlock.

Definition 7 (Local transitions for receive)

We distinguish between the reception of synchronous and asynchronous messages:

e The following transition describes the reception of an asynchronous message for

which the receiving rebec has a corresponding server:

(r,0,Sq) — (r,0,S q.m)

e Asynchronous messages for which the receiving rebec does not have a corresponding

receiver are simply discarded:

rm

(r,0,50) — (r,0,Sq)

e Finally, we have the following transition which described the reception of a synchro-

nous message:

(r,o,receivémy,....m,); S q) ) (r,d’,S0)
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where, given the method definition(uy, ..., uy) andv = (v1,...,Vy),
o’ =o{vi/u1,...,Vn/Un}.

Definition 8 (Local transition for creation)

When the next statement to be executed is a creation statement we have the following
transition:
(r,0,x=newA);S,q) - (r,0’,S q) whered’ = o{r’/x}. Herer is chosen arbitrarily.

Freshness af is ensured in the context of a component (described in the next section).

4.4 Components

A component encapsulates its internal structure which is given by a set of rebecs.

Definition 9 (Component configuration)

A component is a non-empty, finite set of rebecs and a component configuration is shown
asC = {ly,...,I} wherel; denotes the local configuration of relrgc

Components interact only by broadcasting anonymous messages. The set of public
methods of the rebecs inside a component define its (provided) interface. A message re-
ceived by a component is broadcasted to all its internal rebecs. We formalize the externally

observable behavior of a component by means of a transition relation with labetsl ?m
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which indicate sending and receiving anonymous asynchronous messaggpectively.

Communications between rebecs of a component are hidden.

Definition 10 (Component transition for internal communication)
The following transition describes internal synchronous and asynchronous message pass-

ing,

rpmorpmo
|i—>|i,|j—>|j,l7éj

T
(sl oot} {1l
J J

Note that this rule describes sending a synchronous or an asynchronous messagtfrom
rj(i# ).

Definition 11 (Component transition for send)

The following rule describes broadcast of an anonymous asynchronous message generated

by an internal rebec.

m
|i—>|i/

(TP TN 1y EL (P T 1

Definition 12 (Component transition for receive)
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The following rule describes the internal broadcast of a received anonymous (asynchro-

nous) message.

ri.m B
li S for all ie{l,...,n}
m
(T P LT T T

Definition 13 (Component transition for creation)

The following rule describes the creation of an internal rebec.

r
n+1
I B

T
PR TN 1y S O T P

wherel,. 1 denotes the initial local configuration of the newly created rehecwhich is

required not to existiflq,...,li,...,In}, i.e.,rmy1 #ri, i € {1,...,n}.

Definition 14 (Component internal transition )

Finally, the following rule describes the internal interleaving execution of rebecs within a

component.

T
|i—>|i/

T
{1slireesdn {11l I}

A global model simply consists of a set of components.
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Definition 15 (Global configuration)

A global configuration is a finite set of component configuratif@s . ..,Cy}.
Next we define the global transition system which describes the behavior of a set of

components as a closed system.

Definition 16 (Global transition for communication)

This transition describes the broadcasting mechanism of asynchronous anonymous mes-

sages.

et ¢ i
{C1,--Ciy-Cj ,...,Cn}L{C’l,...,ci’,...,cj,...,Cﬁ}

Note that an anonymous asynchronous message is broadcasted to all the other compo-

nents.

Definition 17 (Global internal transition )

All the other transitions of components are as internal computation steps in the global

configuration.

Cil)Ci/
{C1,--.Ciy-.Cn}—{C1,-...CL,....Cn}
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4.5 An Example: Bridge Controller

Here, we explain a simple example to show our modeling approach. Consider a bridge
with a one-way track where only one train can pass at a time. This example can be easily
extended to multiple tracks. Trains enter the bridge from its left side, pass it, and exit from
the right side. Rebeca code for this example is shown in Figure 4.1. We model the two
ends of the bridge by two objects controlling these ends. These objects are described by
the classe&eftControllerandrightController. The rebecsheLeftCtrlandtheRightCtrlare
instantiated from these two classes and together form a component. Trains are modeled
by theTrain class. Many trains can be instantiated from this class, but in this example we
only have two trains instantiated. Each single train instance is modeled as a component.
Trains announce their arrival by broadcasting the anonymous measagg(My TrainNr)

to the Controller component. To this message onlyléfi€ontroller will react by broad-
casting theYouMayPass(MyTrainNmnessage after which tHeftController waits for the
synchronous message passed. The mesdagidayPass(MyTrainNmyill be received by

both trains, however only the train identified By TrainNr will enter the bridge (after

the test the other train will remove the message from its queue and wait for the next mes-
sage), Passing the bridge is modeled by broadcasting the mdssageto the Controller

component. To this message only tightController will react by sending the synchronous



activeclass leftController() {
knownobjects { rightController right; }
provided { Arrive; }
required { YouMayPass; }
statevars { int trainsin; }
msgsrv initial() {
trainsin = 0;

msgsrv Arrive (int TrainNr) {
YouMayPass(TrainNr);
trainsin = trainsin + 1;
receive(passed);

activeclass rightController() {
knownobjects { leftController left; }
provide { Leave; }
request {}
statevars { int trainsout; }
msgsrv initial() {
trainsout = 0;
}

msgsrv Leave() {
trainsout = trainsout + 1;
left.passed();
}
}
{train2};

activeclass Train(){
knownobjects {}
provided { YouMayPass; }
required { Arrive; Leave; }
statevars { boolean OnTheBridge; }
msgsrv initial(int MyTrainNr) {
self.ReachBridge();
OnTheBridge = false;

msgsrv YouMayPass(int TrainNr) {
if (TrainNr == MyTrainNr) {
self.GoOnTheBridge();
OnTheBridge = true;
}

msgsrv GoOnTheBridge() {
Leave();
OnTheBridge = false;
self.ReachBridge();
}
msgsrv ReachBridge() {
Arrive(MyTrainNr);
}

main {
Train train1(1);
Train train2(2);
leftController theLeftCtrl(theRightCtrl);

rightController theRightCtrl(theLeftCtrl);

Components:
{train1};

{theLeftCtrl, theRightCtrl};
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Figure 4.1: Bridge Controller Example, Modeled in Extended Rebeca
message passed to tfle&Controllerwhich enables theeftControllerto receive newArrive
messages. Note that thus no trains are allowed to enter the bridge (by exéxo@nd he-
Bridge) while theleftControlleris suspended). Two variablgsainsin andtrainsout are
added to the code for verification purposes, explained in Section4.6.

In Figure 4.1, encapsulation of rebecs in a component and also three types of message
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passing can be seen. The two left and right controllers of the bridge are tightly coupled
and are encapsulated in a component. It allows the synchronous message passing between
them. Trains are independent objects and can communicate by broadcasting asynchronous
messages. Itis also shown that the broadcasted messages are only serviced by the provider
rebecs.

Further, in Section 4.6, we will show the application of our modular verification ap-

proach on this example.

4.6 Formal Verification of Properties

Formal verification of properties for components, is a problemmoélel checking of open
systems By anopen systefmwe mean a system that interacts with its environment and
whose behavior depends on this interaction; unlikdased systemwhose behavior is
completely determined by the state of the system. The crucial point in model checking an
open system, which is usually referred torasdule checkings modeling the environment.
To model the nondeterminism, an environment can be modeled as a general process with
arbitrary behavior [62, 34, 10, 9].

For module checking components in extended Rebeca, we define a general environ-

ment. A component interacts with its environment by means of sending and receiving
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asynchronous anonymous messages. Because of the asynchronous nature of the commu-
nication mechanism, we only need to model the messages generated by the environment.
Each message generated by the environment is broadcasted to the internal rebecs of the
component. If the required service is provided by a rebec, the message is put in the rebec’s
queue.

To model an environment which simulates all the possible behaviors of a real environ-
ment, we need to consider an environment nondeterministically sending unbounded num-
ber of messages. It is clear that model checking will be impossible in this case. To over-
come this problem, we use an abstraction technique. Instead of putting incoming messages
in the queues of rebecs, they may be assumed as a constant set of requests to be processec
at any time, in a fair interleaving with the processing of the requests in the queue. This way
of modeling the environment, generates a closed model which is bisimilar to the model re-
sulting from a general environment which nondeterministically sends unbounded number
of messages.

We will proceed by a formal definition of a general environment for Rebeca compo-
nents. Then we show that the component’s behavior in this general environment, weakly
simulates the behavior of the component being concurrently executed with any arbitrary

component. So, we can use model checking to prove certain properties for a component
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interacting with a general environment, and then deduce that these properties preserve for
that component in any environment. Before showing the weak simulation, we use our
abstraction technique to overcome the unboundedness problem of queues in a general en-

vironment, and make model checking feasible.

Definition 18 (Environment of a component)

For each componef@, we define a componeig: as a general environment f@; where

Ec nondeterministically broadcasts all the provided messag€s of

The global configuration made I8y andEc is a closed model which we denote it lsls
i.,e. M = {C,Ec}. The interface and body of compondft can automatically be derived
from the interface o€. The required messages&f are all the provided messages@f
Ec has no provided message and no instance variable. For each provided megsafes
C, there is a rebec ikc, which has one method nameadtivein its body. This method
sends two messages: first to C, and second aactive message to itself. Sending the
active message to itself makes an infinite loop for sendingrthéo C. According to the
broadcast mechanism, the environment compoBegraiso receives all the messages from
componenC. As there are no provided messageg&d they are all purged.

In modeling environment as a component, we use existing data abstraction techniques
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to reduce the number of messages to a finite set, but still the number of sent messages can

be unbounded. Given this assumption, we proceed to next definition.

Definition 19 (Queue abstraction)

In the modelM = {C,E¢}, instead of putting all the messages coming frBmin the
message queues of rebec€irwe model each external message by a transitidh dflore

specifically, for each external messageve introduce the following local transition:

rm

(r,o,nil,q) — (r,0,S,0),

whereSis the handler ofn. In this way, the queues of the closed systéranly contain
internal messages and we obtain a finite modeéVlah case the transition system of the

closed systergt is finite. This abstraction d¥l we denote by?.

Theorem 1 (Correctness of the queue abstraction)

The modeM = {C,Ec}, is bisimilar to modeC?. The proof is based on the fair interleav-

ing manner of processing the messages in the queue and the set of provided messages.

Now, we will proceed by defining the weak simulation relation between two models in
Rebeca, first one consists of a component and the general environment, and the second one

consists of that component with any arbitrary component. Here, according to Theorem 1,
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we can develop the preorder relation upon the abstracted model. Next, we define a general
definition for weak simulation, and then continue by applying the definition on our specific

models.

Definition 20 (Weak Simulation)

Given two transition systems; = (S, Ty, 11) and2; = (S, T, 12) where§ is the set of

states foiZj, Ti C S x S is the transition relatiorl; is the initial state fol;:

1. ArelationH is aR-simulation betwee; andX,, whereH,RC § x &, if and only

if for all 5, ands,, if H(s1,s) then the following conditions holds:
(@) R(s1,%)-
(b) For every stats; such tha(s;,s}) € Ty we have(s|,sp) € H (stuttering), or else

there is a state, with the property thats,,s,) € T, and(s},s,) € H.

2. We say that, R-simulates>; (denoted by < 25) if there exists &R-simulationH

betweenx; andX, such thaH (14, 12).

The above general definition for the specific case of models in extended Rebeca, shall be
instantiated by defining relatiod between the states of two systems. For that we need a

projection definitions | C means the projection of stageof the modeM;, over variables
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and queues of rebecs in compon€nand for the queues, only considering messages com-
ing from internal rebecs. It means ignoring the variables and contents of message queues
of other components iM and also ignoring the messages sent from other components in
the queues of rebecs h So,s; | C =5 | C means variables of rebecs in component C
have the same value in stat®@sands,, and also the message queues of rebe€have

the same content in statesandsp, considering only the messages coming from internal
rebecs ofC.

Based on Definitions 18, 19 and 20, we have the following theorem.

Theorem 2 (Weak simulation between models)

Given a componer@ and an arbitrary compone@t, the transition systerf; = (S, Ty, 11)
of the (abstracted) mod€l?, R-simulates the transition systely = (S, To,12) of the
modelM, = {C,C'}, whereR(s,s) iff 5 | C=5, | C.

The formal proof is quite similar to one in [53]. Intuitively, it is based on the fact that
in each state of the transition systay, the enabled transitions are a subset of enabled
transitions in the correspondent state of the transition sy&terBy correspondent states,
we mean the states B andZ, which satisfy the simulation relation, starting from the
initial state. This is because of the definition of general environment which covers all the

possible messages, and hence transitions.
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Definition 21 (Satisfaction relation)

1. A computation of a componefitis a maximal execution path beginning at the initial
state. Given an LTL formulg, we say thaC = @iff @ holds for all computations of

C.

2. Given a CTL formulap, we say thaC = @iff @holds in the initial state of.

We have the following theorem from [17].

Theorem 3 (Property preservation)

If My weakly simulatedM,, then for every ACTL* or LTL formulag without the next

operator (with atomic propositions on variabledMa), M = @ impliesM1 = @.

In the module checking approach we used Definition 18, by modeling a general envi-
ronment as a component. Then, we used Definition 19 and Theorem 1 to abstract from
unbounded queues resulting from external messages and as such obtain a reduction of the
state-space.

Next, we shall explain how to model check the obtained closed model. In model check-

ing the asynchronous kernel of Rebeca, we gained a significant state reduction due to the
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asynchronous nature of communication and computation which allows to model the execu-
tion of a method as an atomic operation. In the presence of the synchronous communication
mechanism this is no longer possible because of the additional synchronization between
sender and receiver which requires the introduction of new states. However, this extension
is bounded by the number of synchronous messages and rebecs, and as an internal behavior
of a component, it is resolved by model checking, without any effects on the theorem.
Execution of a method is no more an atomic operation, it may be interrupted as a con-
sequence of sending or receiving a synchronous message, i.e., sender and receiver have to
wait at the handshaking point until the other pair arrives. Therefore, it is no more the case
that every transition is only taking a message from top of a rebec’s queue and execute its
corresponding method. It should be first checked whether the rebec is in a hold state at a
rendezvous point, waiting for a matching send or receive to happen. Also, while executing
a method, a rebec may reach a handshaking point for which another rebec is already wait-
ing. In this case, the values of the parameters are passed to the receiver and the method
execution is continued. Also, a flag for the pair is set, indicating that the handshaking has

been taken place and the hold rebec can continue its execution in its next turn.
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Verifying Properties of the Bridge Controller Consider the Bridge controller model

in Figure 4.1, explained in Section 4.5. Safety and progress properties of the model can
be verified by translating the Rebeca code into SMV or Promela using our tool described
in the next section. Mutual exclusion is that at any moment only one train should be on
the bridge, progress is that trains should finally pass the bridge, and no starvation is both
trains finally pass the bridge. These properties can be checked using the state variable
OnTheBridgeof trains. The LTL formula for checking these properties are the followings

(O denotesalwaysand<> denotedinally) :

e Mutual exclusion:d!(train1.0OnT heBridge&& train2.0nT heBridgé

e Progressf{(train1.0OnT heBridge| train2.0nT heBridge

e No starvation:d{(train1.0OnT heBridge && {(train2.0nT heBridge

These properties should also be translated to the specification languages of NuUSMV
and Promela. For module checking, we consider the controller component. Our purpose
is to check its properties in all the possible conditions, i.e., in a general environment. In
this example, a general environment is an environment sending to controller component,
all of its provided messages in a nondeterministic way. The provided messagasiase

serviced byeftControllerandLeaveserviced byightController. Our tool supports module



80

checking components by modeling the abstracted environment. Here, it means that in those
states where the statement to be executed is nil, two transitions corresponding to execution
of methodsArrive andLeaveare always enabled.

In Module checking the controller component, we remove all other rebecs including
their state variables and queues. So, we cannot r€adrheBridgevariables to check
the properties. In this case, state varialdl@snsin of theLeftCtrl and trainsout of the
theRightCtrican be used to check the safety property:
O (theLeftCtrltrainsin—theRightCtrltrainsout< 1). To check the deadlock property, a

variable has to be added to show sendfieagMayPassnessage.



Chapter 5
A Tool for Model Checking Rebeca

5.1 Introduction

Rebeca Verifier is an environment to create Rebeca models, edit them, and translate them
into SMV [1] or Promela [4]. Also, modeler can enter the properties to be verified at the
Rebeca code level. The temporal logic supported by the tool for specifying the properties
is based on the specification language of the back-end model checkers. The output code
can be model checked by NuSMV [1] or Spin [4] respectively. Modular verification and
automatic abstraction is also supported by the tool. Based on a Rebeca model, one can
choose a subset of reactive objects in the model as a component. The tool then automati-
cally generates the component model, as a Rebeca model, which can be translated to SMV
as well. To build the component model out of components, a general environment is sim-

ulated by allowing all possible interactions. Figure 5.1 is a block diagram showing the

81
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language, verification approach, under lined theories, and tool features, together with their

relationships.

5.2 The Rebeca Verifier

The Rebeca Verifier [55, 54, 57] provides an integrated environment to create Rebeca mod-
els and corresponding components, specify properties, and translate models and compo-
nents to SMV or Promela. Using the tool, a user can create, edit and debug Rebeca codes,
such that the code can be successfully translated to one of the back-end model-checker
languages. The required properties can be expressed at Rebeca source code level, using
temporal specification patterns based on the specification language of the back-end model
checkers. These properties can also be automatically translated to the specification lan-
guage of the selected back-end model checker. The output code can be model checked by
NuSMV or Spin.

Modular verification is also supported by the tool. The user designates the component
to be verified, and then the tool automatically generates a closed model and translates it
to the language of back-end model checkers. Properties should be specified based on the
variables in the component. The rebecs in the rest of the model are abstracted and their state

variables and message queues are not included in the generated code. Modular verification
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supported by tool, is further described in Section 5.5. Figure 5.2, shows the use case
diagram of the system, including creating models and components, specifying properties,
and translating them into SMV or Promela.

The UML component diagram of the tool is shown in Figure 5.3. Rebeca Verifier
is written in Java and consists of components: Property handler, Component generator,
and Code generators which use Property parser, Model parser and JGraph packages. We
used SableCC [25] for generating the parser. SableCC produces shift-reduce parsers for
LALR(1) grammars expressed in EBNF format. Parsers generated by SableCC produce
abstract syntax tree (AST) of the input code. Component generator, and SMV and Promela
code generators uses this AST to navigate in the Rebeca source code and build the SMV
or Promela result code. The user can also specify a LTL or CTL property based on rebecs
variables. The property handler, changes this property to the suitable form to be used by
NuSMV or Spin.

Component generater also includes a model viewer to visualize the model using JGraph
package. In the visualized model, the user can select a subset of rebecs in a Rebeca model to
create a component. This will generate an open system. The rebecs which are now interact-
ing with the outside world and their interface with the environment are all determined and

visualized. The component composed by its environment makes a closed system, called a
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component model, which can be automatically generated by the tool. A simple example in
Section 5.6 shows the approach.

Although the property-preserving abstraction technique is used to prevent an unbounded
amount of external messages coming into the queue, but still the queue may grow unbound-
edly by putting messages which are sent by internal rebecs. The back-end model checkers
do not support unbounded data types, so we need a limit for each rebec queue. A queue
length, which can be different for each rebec, is provided by the tool and is defined by
the modeler. The queue overflow can be checked as a property by the tool, and the queue

length can be increased if necessary.

5.3 Translating Rebeca to SMV

NuSMV [1] is a symbolic model checker which verifies the correctness of properties for
a finite state system. The system should be modeled in the input language of NUSMYV,
called SMV, and the properties should be specified in CTL or LTL. The only data types
in the language are finite ones, including booleans, scalars and fixed arrays. A SMV code
is a set ofModuledefinitions, including anain module. Processesre instantiated from
Modules and are used to model interleaving concurrency. The program executes a step by

non-deterministically choosing @ocessthen executing all of the assignment statements
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in that process in parallel. The main control structure in SMV isrtbet-casestatement.
Using this statement, the programmer can specify the next value of a variable, according to
the current value of all variables in the code.

In Rebeca Verifier, the SMV code generater is used to produce SMV codes from Rebeca
models [55]. The mapping from Rebeca constructs to SMV is shown in Table 5.1. Each

class in Rebeca is translated to a module in SMV and for each rebec a process is defined.
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Each method of a rebec has to be executed in an atomic step, it can be done in a SMV
process. All the changes to a specific variable in a process, under different conditions, shall
be indicated in onaext-casestatement. So, all the assignments to one variable in different
methods of a rebec are mapped into oext-casestatement. There is a variable in the
translated SMV code which specifies the method that is currently executed. This variable
is used to set up the correct condition in ttesepart of thenext-casestatement. To be

able to translate a Rebeca code into SMV, we do not allow loops, and multiple assignments
to the same variable in a method.

Execution of rebecs methods depends on the messages in the message queue, in each
step the message on the top of the queue is taken and its corresponding method is executed
atomically. Message queues are translated into arrays in SMV. With no variable indexes
for arrays in SMV, the translated code becomes very long. In our translation procedure,
we considered some optimizations to generate an efficient code in SMV with the minimum
reachable states while not violating Rebeca semantics. For instance, we need to manipulate
empty entries in the message queue in a way not to produce a dummy new state. Modeling
the message queue as a structured variable increases the number of state variables consid-
erably and it may cause state explosion quickly.

Instead of defining fixed length arrays for all rebecs, we let the modeler to define the
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Table 5.1: Mapping Rebeca Constructs to SMV

Rebeca construct SMV construct
class module
rebec process
known objects parameters of the process
message queue array
message server distributed in the code of a process
state variables of arebec local variables of a process

length of the queue. A queue-overflow variable (corresponding to each rebec) is maintained
in SMV code and can be checked as a property. Often, in our case studies, we had to

increase the length of the queues to allow proper executions without the queue overflow.

5.4 Translating Rebeca to Promela

Spin [4] is a model checker that supports the design and verification of asynchronous
process systems. Process interactions can be specified in Spin with rendezvous primitives,
asynchronous message passing through buffered channels, shared variables, and also the
combination of them.

In the Rebeca Verifier, the Promela code generater is used to produce Promela codes
from Rebeca models. The mapping from Rebeca constructs to Promela is shown in Ta-
ble 5.2. Each class in Rebeca is a proctype in Promela, and each rebec is a process. Each

method of a rebec is mapped to an atomic block in the corresponding process in Promela.
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Table 5.2: Mapping Rebeca Constructs to Promela

Rebeca construct Promela construct
class proctype
rebec process
known objects parameters of the process
message queue channel
message server atomic block
state variables of a rebec global variables
non-deterministic assignment if-selection
synchronous message zero length channel

The message queues can easily be modeled by channels, according to the length specified
by modeler. Within an infinite loop in a process, the message channel is read for the next
message to be served. After receiving a message, the atomic block associated to that mes-
sage will be executed. Processes (rebecs) are instantiated in the init process of Promela. In
extended Rebeca (which is presented in [52] and enriches Rebeca with a formal concept
of components in modeling and provides an additional communication mechanism based
on synchronous message-passing), for each synchronous message there is a zero-length
(rendezvous) channel in Promela code.

A major problem in mapping an object-based code to Promela concerns the state vari-
ables. In Spin, properties can only be specified on global variables. In Rebeca we do
not have global variables, and our properties are based on state variables of rebecs. In the

mapping algorithm, all state variables in Rebeca are mapped to global variables in Promela.
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5.5 Creating Components and Module Checking

The compositional verification approach for Rebeca models is explained in Chapter 3. For
compositional verification we need to model check a component, which is a subset of the
closed model and build an open model itself. Then, use our theory to prove the desired
properties for the whole model. For model checking an open model we need to simulate
the environment, this is called modular model checking or module checking [62, 34]. Simu-
lating and abstracting the environment as a set of external messages, are done automatically
by Rebeca Verifier.

To create a component, the whole model is visualized and the modeler can select a sub-
set of rebecs in the model as a component. This will generate an open system. The rebecs
which are now interacting with the outside world and their interface with the environment
are all determined and visualized. The open component which is composed by its envi-
ronment makes up a closed system, called a component model. The tool determines the
external rebecs which interact with the component as its environment, and a Rebeca code
is automatically generated for this component model. Each external rebec is modeled in
the Rebeca code of the component model by indicating the messages that are sent by it.
The SMV code then can be generated from the component model.

External rebecs are not modeled as processes, so all of their state variables are removed
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from the model. In the internal rebecs which could receive messages from outside, a fair
nondeterministic choice has to be made between internal message on top of the queue,
and all the external messages present. Also, the code that changes the message queues of
external rebecs are removed because these are messages sent to external rebecs which are

no more present. A simple example in Section 5.6 shows the approach.

5.6 An Example: Bridge Controller

Here, we explain a simple example to show our modeling and verification approach using
Rebeca Verifier. Consider a bridge with a track where only one train can pass at a time.
There are two trains, entering the bridge in opposite directions. A bridge controller uses
red lights to prevent any possible collision of trains, and also guarantees that each train will
finally pass the bridge.

Figure 5.4 shows the Rebeca code for bridge controller example. There are two classes,
one for the bridge controller and one for the trains. The bridge controller uses its state
variables to keep the value of the red lights on each side, and has flags to know whether
a train is waiting on each side of the bridge or not. Whenitliteal message server of a
train is executed, Rassednessage is sent to self. Serving this message causes a message

Leaveto be sent to the bridge controller and a mesdagachBridgelo be sent to self.
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reactiveclass BridgeController(5) {
knownobjects { Train t1; Train t2; }
statevars {
boolean isWaitingl; boolean isWaiting2;
boolean signall; boolean signal2;
}
msgsrv initial() {
signall = false; isWaitingl
signal2 = false; isWaiting2

false;
false;

msgsrv Arrive() {
if (sender == 1) {
if (signal2 == false) {
signall = true;
t1.YouMayPass();
} else { isWaitingl = true; }
} else {
if (signall == false) {
signal2 = true;
t2.YouMayPass();
} else { isWaiting2 = true; } }

msgsrv Leave() {
if (sender == 1) {
signall = false;
if (isWaiting2) {
signal2 = true;
t2.YouMayPass();
isWaiting2 = false; }
} else {
signal2 = false;
if (isWaitingl) {
signall = true;
t1.YouMayPass();
isWaitingl = false; } }

reactiveclass Train(3) {
knownobjects { BridgeController controller;}
statevars { boolean onTheBridge; }
msgsrv initial() {
onTheBridge = false;
self.Passed();

msgsrv YouMayPass() {
onTheBridge = true;
self.Passed();

msgsrv Passed() {
onTheBridge = false;
controller.Leave();

self.ReachBridge();
}
msgsrv ReachBridge() {
controller.Arrive();
}
main {

Train train1(theController);
Train train2(theController);
BridgeController theController(trainl, train2);

}

Figure 5.4: Bridge Controller Example
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Method ReachBridgesends arArrive message to the bridge controller. By receiving the
messag@arrive, in the case that the light for the other side of the bridge is red, the bridge
controller gives the permission to the requester to pass the bridge by sendivouitiay-
Passmessage. If the light for the other side of the bridge is green, then the train cannot pass
and a flag is set to indicate that the train is waiting. By receiiagMayPassnessage, a

train sends &#assednessage to itself. By receiving@avemessage, the bridge controller
checks if the other train is waiting to pass and sene@aMayPassnessage to it if it is
waiting and sets the lights properly.

In modular verification of Rebeca codes, a component is generated by decomposing
a model into components. The environment is defined as a set of external messages, and
external messages can be derived from provided messages of all internal rebecs of a com-
ponent. As the whole system is generated first, all the possible senders of a message are
known.

A component is chosen by the modeler based on the property to be proven, in a way
that the overall property of the system is derivable from components properties. In this
approach, we can prove the properties of the different components of a model, which can
include shared rebecs, and use deduction to prove the required property of the system. In

the bridge controller example, the required properties are that at any moment only one train
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should be on the bridge (mutual exclusion), trains should finally pass the bridge (progress),
and both trains finally pass the bridge (no starvation). So the system properties are specified

in LTL (Linear Temporal Logic) [24] as follows:

e Mutual exclusion:d!(train1.0OnT heBridge&& train2.0nT heBridgé

e Progress{(train1.0OnT heBridge| train2.0nT heBridgé

¢ No starvationO(<>(train1.OnT heBridge && <(train2.0nT heBridgé)

Here, we can decompose the model into two components, eaclBvidkpe Controller
and one of the trains in it. Because of the symmetry present in the model, it is enough to
consider one of the components, model check it, and then use deduction to prove the overall
property of the system out of component properties proved by model checking. Figure 5.5
shows a snapshot of the system, creating the required component. For the component in
Figure 5.5, the state variables of reliexinl are abstracted away. So, we need to rephrase

the properties according to the state variableBridgeControllerandtrain2:

e Mutual exclusion:O ! (theControllersignall && theControllersignal?)

e Progress{(theControllersignall || theControllersignal2)

e No starvation:d({(theControllersignall) && <>(theControllersignal))
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These rephrased properties are proved by model checking. We also prove the property:

e O (theControllersignalk — {(train2.0nT heBridge)

Using the rephrased properties and the latter property, the system’s properties are proved
accordingly.

In the next section, the state space generated for model checking bridge controller ex-
ample (and other examples) are presented and compared with the module checking the

components, and the amount of state space reduction is shown.
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Chapter 6

Case Studies

6.1 Introduction

Rebeca Verifier is used to model check typical simple case studies as well as some medium-

sized case studies (like the IEEE CSMA/CD protocol [47, 19]). We selected typical case

studies from [39] and also from the case studies which are model checked by existing model

checkers. For example we modeledder electior{both LCR and HS algorithms) [39%he

commit problen{39], trains and the bridge controllef11], dining philosopherg29, 49,

39], readers and writersandgossiping girls These case studies are translated to SMV or

Promela or both, and are included at Rebeca Home page [2]. The compositional verification

approach is applied on some of these case studies and the state space reduction is evaluated.
Note that comparing SMV and Promela or their corresponding model checkers is not

our goal. The goal is to examine the expressive power of Rebeca in modeling typical
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cases of different computing paradigms in modeling distributed and concurrent systems;
and evaluating the compositional verification approach and find the patterns on which this
approach works efficiently; and also investigate and extend the tool capabilities. Although,
comparing NuSMV and Spin, considering a number of criteria, is considered as our future
work. In the following we shortly explain a number of case studies, for the first three ex-
amples compositional verification approach is applied and state space reduction is gained.
Module checking by Rebeca Verifier is currently supported by SMV code generater, the
model checking process is done by NuSMV 2.1.2, executed on Windows XP professional,
CPU: Athlon XP 1700+, with 512 MB RAM.

Safety, deadlock and starvation properties are first checked for the close model. In all
the examples, there were bugs in our code which were found by model checking. Some
of the bugs simply were in initializing variables and some were more serious ones, in
communication and synchronization between rebecs. The CPU time and memory used by
SMV for computing total and reachable states are shown for the first three case studies.
Also, the components that are selected and model checked are given. These results show
that how modeling the components instead of the whole system can help in reducing the

reachable states.
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Table 6.1: Trains and the Controller: Closed-World Compared to Component-Based Ap-

proach (results generated by NuUSMV)

Approach Model Reachable Total states CPU time| Memory

states (mm:ss) | (KByte)

Closed-world| 2 Trains/Controlle 203 5.16e+13 | 00:00 8956

Component-| 1 Train/Controller 231 2.38e+09 00:00 8612
based (an ext. Train)

6.2 Bridge Controller

This example is explained in Chapter 5. In this example there are two trains travelling oppo-
site to each other. There is a bridge in the path, which is not wide enough to accommodate
both trains. There is also a bridge controller which has to prevent collisions between the
two trains. Model checking results are summarized in table 6.1. It can be seen that total
state space is reduced in the orderl6f, but the number of reachable states is slightly
increased. Number of rebecs present in the component is less than the rebecs present in the
close model, and so the number of state variables are less in the component. The number
of reachable states is increased because of the external messages that are always present in
a component model, but are not really sent in the close model.

We checked the queue-overflow condition and found out that queue length of two for

the trains and four for the bridge controller is enough for preventing overflow.
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6.3 Dining Philosophers

This example is explained in Chapter 3. We modeled the dining philosophers example as a
case study and translated it into SMV using the tool. Therengeilosophers at a round
table. To the left of each philosopher there is a fork, but s/he needs two forks to eat. Of
course only one philosopher can use a fork at a time. If the other philosopher wants it, s/he
just has to wait until the fork is available again. The system safety requirement is that at
any given time two neighboring philosophers cannot both hold the fork between them.

In the close system, there are eight rebecs, four philosophers and four forks. The com-
ponent includes two philosophers and one fork, so we have three internal rebecs, and only
two external ones. Other rebecs do not send any messages to internal rebecs of the specified
component. These two external rebecs are two forks adjacent to the internal philosophers.
The reduction in state space is significant in this example and is shown in Table 6.2. Only
in the close model with two philosophers and two forks, the reachable states are less than
reachable states of the component. This is again caused by external messages which made
the enabled transitions more than the real enabled transitions in a close world. But total
states are less because of the reduction in number of variables.

This case study can be considered as a prototypical example of a general problem con-

sisting of a set of reactive objects arranged in a ring-shape topology; representing a resource
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Figure 6.1: A Snapshot of the Tool, Creating a Component from Dining Philosophers
Example.

allocation problem involving allocation of pairwise shared resources in this ring of objects.
The model in Rebeca is scalable without any changes in the code of philosophers or forks,
as the links between rebecs do not change by increasing the number of rebecs (see fig-
ure 6.1 which is a snapshot of the tool creating a component consisting of two philosophers
and one fork). Thus, the properties which are satisfied for the component preserves for the

model consisting of any number of rebecs.
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Table 6.2: Dining Philosophers: Closed-World Compared to Component-Based Approach
(results generated by NuSMV)
Approach Model Reachable Total states CPU time| Memory
states (mm:ss) | (KByte)
Closed-world| 2 Phils/2 Forks 285 3.28e+22 00:00 11136
3 Phils/3 Forks 14671 8.79e+36 | 00:12 19304
4 Phils/4 Forks | 390720 | 1.80e+52| 06:28 38700
Component-| 2 Phils/1 Fork 4132 1.16e+21 00:02 14076
based (2 External Forks

Table 6.3: Readers and Writer: Closed-World Compared to Component-Based Approach
(results generated by NuSMV)

Approach Model Reachable Total states CPU time| Memory
states (mm:ss) | (KByte)
Closed-world| 3 Readers/1 Writer 3293 2.60e+23 | 00:02 18288
Component- Data Buffer 180 1.81e+09 | 00:00 8664
based (external R/W)

6.4 Readers and Writers

This is the typical example of a data buffer that multiple readers can read from it, but only

one writer can write into it. Here, we need a message queue of length two for both readers
and writers, and four for the data buffer. This case study can be considered as a prototypical
example of a problem consisting of a critical section and requesters arranged in a star-like

topology around it.
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6.5 Leader Election

Leader election example is selecting a node as a leader in a rimgades. In this ring,
each node has a unique identifier which is supposed to be an integer number. The leader
shall be the node with the least among all of thads. Each node knows its owd and
can send messages to one of the nodes next to it or both of them, i.e., the ring can be uni-
or bi-directional. The leader is selected by sending messages to other nodes.

At the beginning, each node introduces itself as the leader to its neighbor(s). Each node
compares thé in the received message to its oveader id and substitutes iti®ader id
with the newid received in the case that the receiveds less than the currefg¢ader id
If a change is made to a noddsader id it will declare this change to its neighbors
by sending messages to them, containing its reader id Two possible algorithms for
solving this problem are named LCR and HS. The time order in LCR algoriti®(ri%).

This time order is decreased@jnlogn) in HS algorithm.

HS Algorithm Each node acts in a set of phases. Node i that is in phase 1, sends a
message containing its ID in two directions. These messages pass thidulgimgth way
and then return to the sender. If both of the send messages are returned to the sender, node

i will continue acting in the next phase. The sent messages might not get back to the node.
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When the message sent by node i moves outwards this node, every node located in its way
compares its own leader ID to the ID in the message. If their own leader ID is less than the
ID in the message, it will be substituted. If it is greater than it, the message will be ignored.

In case they are equal, this means that the node has received its own ID, so the node selects
itself as the leader. In the returning way, nothing is done to the message and it just passes
through the nodes. The algorithm terminates when a node receives its sent messages from

both sides with its own ID, and each message has passed through half of the ring.

LCR Algorithm  This algorithm is declared in a directed ring in which the nodes are
unaware of the number of the other nodes in the ring. First, each node sends its leader ID -
which is equal to its own ID at the beginning - to its right neighbor, and receives a leader
ID from its left neighbor. If the received lead ID is greater than its own leader ID, it will
substitute its leader ID with the new ID and declares this change to its right neighbor. If the
received leader ID is less than a node’s leader ID, it will be ignored. In case the received
leader ID is equal to the node’s leader ID, the node will be considered as the real leader,

and the algorithm terminates.
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activeclass Node(8) {
knownobjects {
Node nodeL;
Node nodeR;
}
statevars {
boolean monitor;
int myld;
int phase;
int monitorld;
boolean receivedLeft;
boolean receivedRight;
}
msgsrv initial(int id) {
myld = id;
monitor = false;
monitorld = id;
phase = 1;
receivedLeft = false;
receivedRight = false;
self.arrive();
}
msgsrv arrive() {
nodeL.receive(myld, true, phase);
nodeR.receive(myld, true, phase);
}
msgsrv receive(int msgld, boolean inOut, int
hopCount) {
if ((sender==nodeL) && (inOut)){
if (((msgld <monitorId)ll(msgld==monitorld)) &&
(hopCount >1)){
monitorld = msgld;
//temp= hopCount-1;
nodeR.receive (msgld, true, hopCount-1);
}
else {
if (((msgld <monitorId)ll(msgld==monitorld)) &&
(hopCount ==1)){
monitorld=msgld;
nodeL.receive (msgld, false,1);
}
else{
if (msgld == myId) {
monitor = true;
monitorld = myld;
}
}
}
}
if ((sender==nodeR) && (inOut)) {
if (((msgld <monitorld)ll(msgld==monitorld)) &&
(hopCount >1)){
monitorld=msgld;
/Itemp= hopCount-1;

nodeL.receive (msgld, true, hopCount-1);
}
else{
if (((msgld <monitorId)ll(msgld==monitorld)) &&

(hopCount ==1)) {

monitorld=msgld;
nodeR.receive (msgld, false,1);
}
else {
if (msgld == myId) {
monitor = true;
monitorld = myId;
}
}
}

}
if ((sender==nodeL) && !(inOut) &&

!(msgld==myld)){

nodeR.receive(msgld, false, 1);

}
if ((sender==nodeR) && !(inOut) &&

I(msgld==mylId)){

nodeL.receive(msgld, false, 1);

}
if ((sender==nodeL) && (msgld == myld) && !(inOut)

&& (hopCount==1)){

receivedLeft = true;

}
if ((sender==nodeR) && (msgld == myld) && !(inOut)

&& (hopCount==1)){

receivedRight = true;
}
if (receivedLeft && receivedRight&& (phase<3)){
if(phase==2) {
monitor=true;
}
else{
phase = phase * 2;
receivedLeft=false;
receivedRight=false;
nodeL.receive(myld, true, phase);
nodeR .receive(myld, true, phase);

}
}

main {

Node nodel(node4,node2):(1);

Node node2(nodel,node3):(2);

Node node3(node2,node4):(3);

Node node4(node3,nodel):(4);
}

Figure 6.2: Leader Election Example: HS Algorithm
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activecl ass Node(4) {
knownobj ects {
Node ri ght Node;

statevars {
int id; // myid
int |eaderld;

}
nmegsrv |n|t|al(|nt nmyid) {

id =nyid

| eaderld = nyid;

ri ght Node. recei ve(nyid);
}

nmsgsrv receive(int 11d) {
if (Ild > leaderld) {
| eaderld = 11d;
ri ght Node. recei ve(l1d);

}
if (Ild == leaderld) {
/1 1 amthe | eader

}
} .
nmsgsrv arrive() {
| eaderld = id;
ri ght Node. recei ve(id);

mai n {
Node node00O(node01): (0);
Node node01(node02):(1);
Node node02(node03): (2);
Node node03(node04): (3);
Node node04(node05): (4);
Node node05(node06): (5);
Node node06(node07): (6);
Node node07(node00): (7);

Figure 6.3: Leader Election Example: LCR Algorithm
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6.6 CSMA/CD Protocol

In this section, we briefly describe the Media Access Control (MAC) sub layer of the Car-
rier Sense, Multiple Access with Collision Detection (IEEE 802.3 CSMA/CD) communi-
cation protocol. This protocol is used in multiple access shared media environments such
as Ethernet LANs, which use a shared bus for connecting a number of independent comput-
ers. The protocol specification consists of MAC entities interconnected by a bi-directional
Medium. Each MAC is representative of a computer in the data link layer. The MAC
entities are identical for all computers and can both transmit and receive messages over
the shared Medium. This means that collisions may occur on the Medium (if two MAC’s
transmit simultaneously). It is assumed that collisions will be detected in the Medium and
signaled to every MAC. Each MAC after transmitting a packet over the Medium, waits to
make sure that no collision has occurred; but if collision occurs, it tries to retransmit its last
packet, until it gets the chance to send the packet successfully without any collision.

As shown in Figure 6.4, a MAC may receigendmessages from its higher level,
indicating a new packet to be sent over the Medium. The MAC cannot process the next
packet before it has transmitted the previous packet successfully over the Medium. In the
simplified model of the protocol shown in Figure 6.4, the target of a packet is clearly the

other MAC present in the composition. Each MAC, similarly, signals@message to its
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Figure 6.4: The MAC Sublayer of CSMA/CD Protocol

higher level upon successful receipt of a packet from the Medium.

Modeling in Rebeca For modeling this protocol in Rebeca, we defined two active classes:
one for the MAC class and another for the Medium class, as shown in Figures 6.6 and 6.7.
The role of the components in the higher level is abstracted in our model using a nondeter-
ministic choice in the MAC for deciding when a new packet is available for sending. The
other role of this layer, which is receiving the packets, does not change any thing in the
model and can easily be ignored.

The composition of our model consists of two instances of the MAC class and one
instance of the Medium class. In order to send a packet, each MAC goes through the
following scenario, as shown in Figure 6.5. After it has decided to send a packet in the

'start’ state, the MAC sendslamessage to the Medium and enters the 'transfer’ state. In
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Figure 6.5: State Chart of a MAC Showing tBend Cycle
the 'transfer’ state, it sends @message to the Medium, indicating the end of the packet.
Then if no collision has occurred, packet transmission is finished and the MAC can get
back to the 'start’ state; otherwise, it should retransmit the last packet by sendinglka new
to the Medium and going back to the 'transfer’ state. We name the above cycleetite
cycleof the rebec MAC.

Collision is detected by the Medium if both MACs try to send packets at the same
time. However, since we are using asynchronous message passing, collision in our model
is defined as the Medium receiving twanessages from both MACs before it has received
their corresponding messages. This way of modeling collision (the coincidence of the
time that two MACs try to send packets) shows how we can model the concept of time

using asynchronous message passing.
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The important point here is that although the MACs work independently from the
Medium, they need to wait for the Medium’s response after sendlisngde to make sure
whether collision has happened. This is achieved by repeatedly sendiwgithackmes-
sage toself until the acknowledgment from the Medium is received. The Medium on the
other hand, needs to wait for the MAC’s bditande messages to make sure whether col-
lision has happened or not. Therefore, the Medium only after receddram a MAC can
determine if its transmission has been collision-free, and give corresponding acknowledg-
ment.

In order to simplify the model, the receipt of a packet is represented by only one mes-
sage from the Medium to the receiving MAC, after which the Medium is assumed to be
empty and ready for the next packet transmission. This has no effect on the generality of
the model; because we can assume that the MAC starts receiving sometime in between
receivingb ande messages from the other MAC, and ends receiving upon recergtof
message, which is sent by Medium immediately after processing thessage from the
sending MAC. It should be noted that after receiving messagg®Recfrom both of the
MACs, anyb from either of them no longer collides with this finished transmission.

When the Medium is processing amessage, if no collision has happenedobision-

falsemessage can be sent to the sender okthssage. On the other hand, which is the
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case of a collision, theollisiontruemessage needs to be broadcast to both MACs. In such
a case, the Medium surely will receive twonessages, because it already has received two
bs. If we do the broadcast just at the fiesive may lose track thies and the nex¢ (which
should be ignored) may conflict with the next transmission from the MAC that had sent the

firste.

Verification Results The CSMA/CD protocol (shown in Figures 6.6 and 6.7) is veri-
fied using Rebeca Verifier. We used Rebeca Verifier to generate codes in both SMV and
Promela. The results of verification of the last version of our model by NuUSMV is 1438
reachable states out of 2.2378e+21 total states. In Spin, the max depth is 6603, and the
number of stored states is 9184.

In the preliminary versions of our Rebeca model, the number of reachable states in
equivalent SMV model exceeds 8 million. Version 6 in Table 6.4 represents one of these
versions. The number of reachable states, the CPU time for computing these states, and also
the memory used in this computation are shown. Table 6.4 shows the results of executing
NuSMV on a Pentium IV 2.00 GHz (full cache) system with 1.0 GB RAM.

Existence of redundant message servers in the MACs, although correct, results in an

excessive increase in the number of states. This is caused by the fact that a rebec needs to



activeclass Mac(3) {

knownobjects {

Medium medium; }

statevars {
boolean receivedSend;
boolean col;
boolean acknowledged; }

msgsrv initial() {
acknowledged = false;
receivedSend = ?{true, false};
col=false;
self.start();

msgsrv rec(){
medium.ackRec();
}

msgsrv start ()
if (receivedSend){
receivedSend=false;

medium.b();
self.transfer();
}
else {
receivedSend = ?{true, false};
self.start();
}

msgsrv transfer(){
acknowledged = false;
medium.e();
self.waitdack();
}
msgsrv waitdack (){
if (acknowledged) {
acknowledged = false;

if (col){
medium.b(); /* retransmit */
self.transfer();
1
else{
receivedSend = ?{true, false};
self.start();
1
}
else {
self.waitdack();
}
}
msgsrv collisiontrue(){
col = true;
acknowledged = true;
}
msgsrv collisionfalse(){
col = false;
acknowledged = true;
}

Figure 6.6: Rebeca Code for MAC

113
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activeclass Medium(5) {
knownobjects  {
Mac macl; Mac mac2; }
statevars {
boolean bbl; boolean bb2;
boolean r1; boolean r2;
boolean col; }
msgsrv initial() {
bbl=false; bb2=false;
col = true; }
msgsrv b() {
if (sender == macl){
bbl = true; }
elsef
bb2 = true;
}}

msgsrv e() {
if (sender == macl) {
if (Ibb2 && bbl){

mac2.rec();
self.ackReceivel();
bbl = false;
col = false; } '}
else {
if (bb1){
macl.collisiontrue();
mac2.collisiontrue();
bbl = false;
col = true; '}
else{
macl.rec();
self.ackReceive2();
col = false;
1
bb2=false;
Pl
msgsrv ackReceivel(){
if (Ir2){
self.ackReceivel(); }
elsef
macl.collisionfalse();
r2 = false;
Pl
msgsrv ackReceive2(){
if (IrL)]{
self.ackReceive2(); }
elsef
mac2.collisionfalse();
rl = false;

}
msgsrv ackRec(){
if (sender == macl){
rl = true; }
elsef
12 = true;
Pl

}

Figure 6.7: Rebeca Code for Medium
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Table 6.4: CSMA/CD Versions Compared using NuSMV
Version| States| Compute timel Memory (KB)
6 8x10°| 00:23:10 972413
8 2x10°| 00:05:23 118016
9.5 1438 00:00:00 14,292
9.6 951 00:00:00 13 384

send a message to itself in order to make a transition from one state to another. Therefore,
arrival of a message between each two state transitions can cause a virtual new state. It
increases the state space proportional to the number of steps in the life cycle of the rebec.
Removing redundant message servers results in version 8 in Table 6.4.

In these versions we also have queue overflow. This is due to the logical unfairness in
the execution of MAC instances. One MAC may infinitely send packets. Consequently the
Medium putgec messages in the queue of the other MAC. As long as the sender MAC gets
more turns than the receiver MAC, the number of messages in the queue increases. In order
to handle this problem, some kind of logical fairness is introduced in verSiérend9.6.

To ensure that MACs receive incoming packets, acknowledgements are sent, declaring that
a MAC has received the last packet; i.e., it finds the chance for execution in the situation
explained above.

The safety property, which is verified and proved to be true in the model, is that no

collision occurs when one of the MACs receives a packet. For that, we defoutdaziable
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in the Medium indicating the collision. The LTL (Linear Temporal Logic) specification of

this property is as follows:

G((mediumrlv mediumr2) —!(mediumcol))

Version 9.6 is developed in order to check the property that there is a possible computation
where although collision happens, the packet is finally received. For this purpose, we
simplified the model in the way that only one packet is sent. If collision occurs, the MAC
retransmits the packet. The LTL specification of this property is as follows:

(macl.col A macl.acknowledgeyl

— F(mediumr2)

and its symmetric counterpart:
(mac.col A ma.acknowledgey

— F(mediumrl)

In global, the other MAC may never receive the packet, as collision may happen forever.
So, the following specifications are false:
G((macl.col A madl.acknowledgey

— F(mediumr2))
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G((mac.col A ma.acknowledgedl

— F(mediumrl))



Chapter 7

Rebecs as Components in a
Coordination Language

7.1 Introduction

The Rebeca semantics, as explained in Chapter 2 is not compositional. We cannot construct
the semantics of the total model by composing the semantics of each rebec which constructs
the model. The compositional verification approach which is discussed in Chapter 3 is
based on decomposing a Rebeca model as a closed model and not composing the rebecs as
the components of a model.

The possibility of mapping Rebeca models into a coordination language, Reo [13, 15],
is investigated and a natural mapping which provides us a compositional semantics of Re-

beca is found. As reactive objects (rebecs) are encapsulated and loosely coupled modules

118
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in Rebeca, we consider them as components in a coordination language. Modeling the co-
ordination and communication mechanisms between rebecs can be done by Reo circuits,
and the behavior of each rebec is specified by constraint automata [14] as a black-box

component within the Reo circuit.

7.2 Reo: a Coordination Language

Components-based software development has been proposed by several authors as a so-
lution to the increasing complexity of software development.Components are assumed to
be individual and independent units of functionality and deployment and thus to turn them
into an application, a mechanism for component composition is needed.

As an important part of component composition mechanism, a piece of connecting code
has to be devised in order to match different requirements in a component compaosition.
This piece of code is often referred toglse code The glue code can range from a simple
synchronization and ordering primitive to a complicated distributed coordination protocol.

It is often necessary to be able to specify and design these connecting devices and analyze
and reason about their behavior individually, as well as in orchestration with (abstract)
behavioral models of components.

Reo is a model for building component connectors in a compositional manner. It allows
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for modeling the behavior of such connectors, formally reasoning about them, and once
proven correct, automatically generating the so-called glue code from the specification.
Reo’s notion of components and connectors is depicted in Figure 7.1, where component
instances are represented as boxes, channels as straight lines, and connectors are delineatec
by dashed lines. Each connector in Reo is, in turn, constructed compositionally out of

simpler connectors, which are ultimately composed out of primitive channels.

a4 3 @ Cl ¢ o3 c g 3
2 cs i [o< I ¢ \ cs
c3 \ ; ‘ g b g
k N .- v
C3 c6 2 . c6
\ / Sl /
(a) a 3—way connector (b) a 6—way connector (c) two 3—way connectors and a 6—way connector

Figure 7.1: Components and Connectors

Reo is a compositional approach to defining component connectorscdreectors
(also callectircuits) are constructed in the same spirit as logic and electronics circuits: take
basic elements (e.g., wires, diodes and transistors) and connect them. Basic connectors in
Reo arechannels Each channel has exactly two ends, which can bi&leend or asource

end. Asinkend is where data flows out of a channel, arsbarceend is where data flows
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in a channel. Itis possible that the channel ends of a channel are both sink or both source. A
channel must support a certain set of primitive operations, such as 1/0O, on its ends; beyond
that, Reo places no restriction on the behavior of a channel. This allows an open-ended
set of different channel types to be used simultaneously together in Reo, each with its own
policy for synchronization, buffering, ordering, computation, data retention/loss, etc. But
for our purpose to model Rebeca models, we need a small set of basic channels.

Channels are connected to make a circuit. Connecting channels is putting channel ends
together in anode So, anodeis a set of channel ends. A node in Reo has a certain
semantics: for all the source channel ends on a node, a fork operation takes place which is
copying the outgoing data to all the channel ends; for all the sink channel ends on a node, a
merge operation takes place which is a nondeterministic choice between incoming data. A
node is called a sink node if it consists of only sink channel ends, it is called a source node
if it consists of only source channel ends, and it is called a mixed node if it consists of both
sink and source channel ends. Figures 7.2.a and b show sink nodes, Figures 7.2.c and d
show source nodes, Figure 7.2.e shows a mixed node. Components can only be connected
to sink or source nodes, mixed nodes are hidden from outside world.

A component can write data items to a source node that it is connected to. The write

operation succeeds only if all (source) channel ends coincident on the node accept the data
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s

a b c d e

Figure 7.2: Nodes in Reo
item, in which case the data item is transparently written to every source end coincident on
the node. A source node, thus, acts as@icator. A component can obtain data items,
by input operation, from a sink node that it is connected to. A take operation succeeds
only if at least one of the (sink) channel ends coincident on the node offers a suitable data
item; if more than one coincident channel end offers suitable data items, one is selected
nondeterministically. A sink node, thus, acts as a nondetermimstiger A mixed node
is a self-contained “pumping station” that combines the behavior of a sink node (merger)
and a source node (replicator) in an atomic iteration of an endless loop: in every iteration a
mixed node nondeterministically selects and takes a suitable data item offered by one of its
coincident sink channel ends and replicates it into all of its coincident source channel ends.
A data item is suitable for selection in an iteration only if it can be accepted by all source
channel ends that coincide on the mixed node.

Figure 7.3 shows a Reo connector, exclusive router which we calXt@asger. Here,
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Figure 7.3: Exclusive Router

we use it to show the visual syntax for presenting Reo connector graphs and some fre-
guently useful channel types. This circuit is used in modeling Rebeca by Reo. The enclos-
ing thick box in this figure represenitsding: the topologies of the nodes (and their edges)
inside the box are hidden and cannot be modified. It yields a connector with a number of
input/outputports, represented as nodes on the border of the bounding box, which can be
used by other entities outside the box to interact with and through the connector.

The simplest channels used in these connectors are synchr@osdhannels, rep-
resented as simple solid arrows. A Sync channel has a source and a sink end, and no buffer.

It accepts a data item through its source end iff it can simultaneously dispense it through its
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sink. A lossy synchronoud ¢ssySyncchannel is similar to a Sync channel, except that it
always accepts all data items through its source end. If itis possible for it to simultaneously
dispense the data item through its sink (e.g., there is a take operation pending on its sink)
the channel transfers the data item; otherwise the data item is lost. LossySync channels
are depicted as dashed arrows, e.g., in Figure 7.3. Another channel is the synchronous
drain channel$yncDrair), whose visual symbol appears as the edge XZ in Figure 7.3. A
SyncDrainchannel has two source ends. Because it has no sink end, no data value can
ever be obtained from this channel. It accepts a data item through one of its ends iff a data
item is also available for it to simultaneously accept through its other end as well. All data
accepted by this channel are lost.

Two channels which are used in modeling Rebeca but are not includ&durer cir-
cuit, areFilter and a special kind oFIFO channels. We definEIFO as an unbounded
asynchronous channel where data can flow in unboundedly from the input port of it (sink
node) and flow out of the output port (source node) if it is not empty; input and output
operations cannot take place simultaneously. Figure 7.5 in Section 7.4, shows the Reo no-
tation (and the constraint automaton) of an 1-bounééd channel. We call the special
kind of FIFO channel which is used to model Rebeca communicati@usue and it is

defined in Section 7.ilter is a channel with a corresponding data pattern, it lets the data
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matched with the pattern to pass, and lose the other Hitiar. channel (and its constraint

automaton) is shown in Figure 7.6.

7.3 Rebecs as Components in Reo

For modeling Rebeca using Reo, we can consider each rebec as a component, and model
the coordination and communication by Reo circuits. For modeling the coordination, an
Xrouteris used which passes the control to each rebec nondeterministically. Communica-
tion takes place by asynchronous message passing which is modeled by queue and filter
channels in Reo.

We model each rebec as a black-box component which starts its execution by receiving
astartsignal, and sends andsignal upon its end. The behavior of a rebec as a component
is to take a message from its message queue upon receiviatathgignal through its start
port, execute the corresponding message server, and sesntaignal through its end
port. The coordination, which is modeled by interleaved execution of rebecs, is handled by
Xrouterwhich passes th&tartsignal to one and only one rebec, waits until receivinga
signal, and passes tstart signal again. This loop is repeated Kyouter, and sending the
signals is done by a nondeterministic choice, which guarantees the execution to be exactly

according to the semantics of Rebeca. The Reo circuit in Figure 7.4 showsdbeer
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rebec_1 rebec_i rebec_n
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Figure 7.4: Modeling Rebeca by Reo
and other channels which are used to manage the coordination and also communication
between rebecs.
For the communication between rebecs, we need queue and filter channels. The mes-

sage queues of rebecs are modeled by queue channels, each queue models a message queus
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We need to design a circuit which allows only the messages which are sent to the corre-
sponding rebec to get into its queue, and filter out the other messages. In Figure 7.4, there
are fork nodes namefg, and merge nodes nam&t]. All the messages that are sent by a
rebecrebeg get out of its porsend then pass &yncchannel and enters the corresponding

fork nodeF. Here, a message is copied into all the source channel ends of the outgoing
filter channels. For a model with rebecs, there anefilter channels, which filter all the
messages except those whose receiver is the one matched to that filter channel. The filter
pattern for all the channels toward a rebec is the id of that rebec. So, all the filter channels
which are merged in the nodé; filter out the messages whose receivers arereiogg,

and only the proper message can pass through the filters and get into the merger node and
hence to the message queue (the queue).

Upon receiving astart signal, a rebec takes a message from its queue by enabling the
takeport, and then execute the corresponding message server. During this execution, the
messages which are sent, flow out of the rebec component thsamglport, and arrive to
the message queue of the destination rebec properly, passing the fork node, filter channels,
and merge node.

Now, we have a Reo circuit which models a Rebeca model. But, to be able to construct

the compositional semantics of a model and verify the properties we need to have a proper
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semantics for this Reo circuit and also for the rebecs. Constraint automata [14] is presented
as a compositional semantics for Reo circuits and can be used to model components and

the glue code circuit in a consistent way, and provide us also with verification facilities.

7.4 Constraint Automata: Compositional semantics of Reo

Constraint automata are presented in [14] to model Reo connectors. We also use constraint
automata to model the components, then we have a Rebeca model fully modeled by con-
straint automata. In this section, we explain the definition of constraint automata and how
the constraint automata of a Reo circuit is compositionally constructed.

Using constraint automata as an operational model for Reo connectors, the automata-
states stand for the possible configurations (e.g., the contents of the FIFO-channels of a
Reo-connector) while the automata-transitions represent the possible data flow and its ef-
fect on these configurations. The operational semantics for Reo presented in [13] can be
reformulated in terms of constraint automata. Constraint automaton of a given Reo con-
nector can also be defined incampositionalway. For this, composition operators for
constraint automata corresponding to the Reo connector primitives are presented.

Constraint automata use a finite 3¢of namese.g.,. A\’ = {A, ..., A} whereA; stands

for thei-th input/output port of a connector or component. The transitions of constraint



129

automata are labeled with pairs consisting of a nonempty subsgt denoted byN, and

a data constraing. Data constraints can be viewed as a symbolic representatiset®f

of data-assignments. Formally, data constraints are propositional formulae built from the
atoms ‘ta = d” which means that data itewh is assigned to poA. Data constraints are

given by the following grammar:
g = true ’ da=d ‘ 01V ‘ -0

whereA is a name and € Data. In the sequelDC(N, Data) shows a nonempty subget

of A/, and denotes the set of data constraints using only atdms-d” for A€ N. As an
abbreviation foIDC(A/, Data), we can usé®C. The boolean connectors (conjunction),

@ (exclusive or),— (implication), < (equivalence), and so on, can be derived as usual.
We often use derived data constraints suclag d or da = dg which stand for the data

constraints

\/ (dA:d/) and \/ ((dA:d)/\(dB:d)),

d’eData\{d} deData

respectively.
We assume a global data dom&ata for all names. Alternatively, we could assign a
data domairDataa to every nameA and require type-consistency in the definition of data

constraints.
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The assumption thddata is finite allows us to derive data constraints dg = dg” or
“da € D" or “(da,dg) € E” for D C DataandE C Datax Data
The symbol= stands for the obvious satisfaction relation which results from interpret-

ing data constraints over data-assignments. For instance,

[A»—>d1,Br—>d2,C'—>d1] = da=dc,
[Al—>d1,BHd2,Cl—>d1] K~ da=dg

if dy # do. With this satisfaction relation, we may identify any data constrgwith the
setd of all data-assignments whede= g holds.
Satisfiability and validity, logical equivalenee and logical implication< of data con-

straints are defined as usual; e.g.:

g1 =g iff forall data-assignmentd: d=g; <= 3=
g1 < gy iff forall data-assignments: d=g1 — 002

Definition of constraint automata We now present the definition of constraint automata

which can serve as operational model for channel-based coordination language, Reo.

Definition 22 [Constraint automata] A constraint automaton (over the data donixts)

isatuple4 = (Q,Names—,Qp) where
e Qis a set of states,
e Alamess a finite set of names,

e — is a subset of) x 2amesy PC x Q, called the transition relation off,
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e Qo C Qis the set of initial states.

We writeq Ng p instead of(q,N, g, p) €e—. We callN the name-set and the guard of

the transition. For every transition

N7
q—>p

we require that (1N # 0 and (2)g € DC(N,Data). 4 is called finite iffQ, — and the

underlying data domaibata are finite.

O

The intuitive meaning of a constraint automaton as an operational model for connectors
of a coordination language is similar to the interpretation of labelled transition systems as
formal models for reactive systems. The states represent the configurations of the connec-

tor, the transitions the possible one-step behavior where the meaning of

N7
q—p

is that in configuratiorg the portsA; € N have the possibility to perform 1/0-operations
that meet the guard and that lead from configuratiamto p, while the other port#\; €

Aames\ N do not perform any 1/O-operation.

Example 9 (1-bounded FIFO channel) Figure 7.5 shows a constraint automaton for a 1-
bounded FIFO channel with input poftand output porB. Here, we assume that the data

domain consists of two data itef@snd 1.
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Figure 7.5: Constraint Automaton for a 1-Bounded FIFO Channel

Intuitively, the initial stategp stands for the configuration where the buffer is empty,
while the stategg and p; represent the configurations where the buffer is filled with one of
the data items[]

The intuitive behavior of a constraint automaton is tAatarts in one of its initial states
Jo. If the current state ig, thenZ waits until data items occur at some of the input/output
ports Ay € Alames Suppose data itemh, occurs atA; and data itend, at A, while (at
this moment) no data is observed at the other p&sts. ., A,. This triggers the automaton
to check the data constraints of the outgoify, A2 }-transitions of statg to choose a

transition

q {AlvAZ}"g p

where [Al — d1, Ao — dz] = g and move to statp. If there is no{Ag, Ao }-transition from

g whose data constraint is fulfilled them rejects. In general, if data occur exactly at the
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input/output portg\; € N then onlyN-transitions (but nd\’-transitions wher&l’ is a subset
or superset oN) where the data constraint is fulfilled can fire.

Having this behavior in mind, the intuitive meaning of conditions (1) and (2) in Defi-
nition 22 is as follows. Condition (1) stands for the requirement that automata-transitions
can fire only if some data occurs at one or more of the parts. ., A,, while condition (2)
formalizes that the behavior of an automaton may depend only on its observed data (and
not on data that will occur sometime in the future).

We now explain how constraint automata can be used to model the possible data flow
of a given Reo circuit. The nodes of a Reo-circuit play the role of the ports in the constraint
automata. We provide@mpositionakemantics for Reo circuits. Thus, we need constraint
automata for each of the basic channel connectors and automata-operations to mimick the

behavior of the Reo-operations for join and hiding.

Constraint automata for the basic channels Figure 7.6 shows the constraint automata
for some of the standard basic channel types: synchronous channels withAauntsink
B, synchronous drain with the sourc&sB, lossy synchronous channels with soufcand
sink B, and filter with sourcé\ and sinkB and patterrP. In every case, one single state is

sufficient. Moreover, the automata are deterministic.
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Sync SyncDrain
A B A B
— —p—a—
{A.B} {AB}
d_A=dB
LossySync Filter
A B A p B
—_——— = — AN\
{A,B} {A.B}
d_A=d_B {A} d_A=P {A}
d_B=P d_A =P

Figure 7.6: Constraint Automata for Basic Connectors
A constraint automaton for the FIFO1 channel was shown in Example 9. For FIFO
channels with capacity 2, similar constraint automata can be used. However, the number
of states grows exponentially with the capacity. For instance, for a FIFO2 channel with
the data domaiq0,1} we need 7 states representing the configurations where the buffer
is empty or the buffer contains one element (0 or 1) or is full (00, 01, 10 or 11). For

unbounded FIFO channels we even get constraint automata with an infinite state space.

Join: merge and product

Definition 23 [Product-automaton] The product-automaton of the two constraint automata
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A1 = (Q1, Names, —1, Qo.1) and Ay = (Q2, Nlames, —2,Qo2), is:
A< A = (Q1 x Q2, Nameg U N ames, —,Qo.1 X Qo.2)

where— is defined by the following rules:

N N
0 =2 pr, G 225 p2, NinAames = Na N Alames

NUNy.
(0, @) =220 (1 po)

and N
G —>1 p1, NNAames = 0

N,
(01, 02) —> (p1, )

and latter's symmetric ruld.]

It remains to explain how the join of two sink nodes, gaynd B, is realized with
constraint automata. To capture the merge semantics of the resulting (new naee
use amergeras shown in Figure 737which we then join (via the product-operatss)
with the constraint automata that cont#rand B respectively. We then can again apply
the product-construction to join the resulting constraint automaton (that cotamsgs

name-set) with another constraint automaton that con@assa source node.

Parameterized Constraint Automata In the previous examples, we concentrated on
data-abstract coordination mechanism. In many applications, the data-abstract view is too
coarse, e.g., for reasoning about the functionality of the components that are glued together.

Because data-dependencies often lead to rather complex constraint automata, we propose

LIn a similar way, a merger can be defined as a connector with three or more “input” nodes.
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constraint automata
for the nerger

\A
C isviewed as
/§

{A
x :=d_A
{B}
d_B=x

Figure 7.8: Parameterized Constraint Automaton for a 1-Bounded FIFO Channel
a parameterized notation which can simplify the picture of constraint automata with non-
trivial guards. For instance, the 1-bounded FIFO channel with arbitrary data domain can

be depicted as in Figure 7.8.

The automaton in Figure 7.8 it a constraint automaton, but an intuitive symbolic

representation of the constraint automaton with state-sRaedqo} U{q(d) : d € Data},
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Qo = {qo}, Nlames= {A, B} and the transitions
{A},da=d
(0} _—

q

for any data itend € Data. Formally, to reason about data-dependent coordination mech-

anisms, we define parameterized constraint automates a tuple
? = (Loc,Var, v, Nlames~, Locy, init)
where

Locis a set of locations,

Locy C Locis a set of initial locations,

Var a set of variables,

v: Loc— 2V assigns to any locatiofia (possibly empty) set of variables,

init is a function that assigns to any initial locatidre Locy a condition for the

variables.

v(¢) can be viewed as the parameter list of locatioriFor instance, in Figure 7.8 we use
g(x) to denote that is a location with parameter listq) = {x}, while qp is a location
with an empty parameter list. The initial condition fgg is omitted which denotes that

init (go) = true.
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The transition relation~ of a parameterized constraint automaton is a (finite) set of

tuples(¢,N,h, X, ¢"), written in the form

Here,

e ¢ and/ are locations,

e N is a non-empty name-set,

e ha (parameterized) data constraintfgrbuilt out of atoms of the formda = expr”.
The expressiomxpr is built from constantsl € Data, the symbolsdg for B € N,
variablesx € v(¢) and operators for the chosen data domain, e.g., boolean operator

V, A, etc. forData= {0,1} and arithmetic operators, *, etc. forData= N.

e The subscripX of the above transition stands for a function that assigns a Aeme

N to each variable € v(¢) \ v(¢) and possibly to some of the variables/i) Nv(¢).

The intuitive meaning oK (X) = Ais the assignmentX:= da”.

We use parameterized constraint automata as a symbolic representation of (hon-parametel
constraint automata. The states of the latter are obtained by augmenting the locations with

values for the variables of their parameter list. Formally, gieas above, the induced



139

constraint automato, = (Q, Alames—, Qo) is defined as follows. The state-spage
of 4 consists of the pair§,n) wherel € Locis a location and)) a variable evaluation for
the variablex € v(¢), i.e.,n is a function fromv(¢) to Data. The states/,n) with ¢ € Loy
andn = init (¢) are the initial states ofly. The transition relation— is derived from~
by the following rule:

(%8 A =n[X.8]lyg. 9=hx/n(X):xev(O)]Ag[d]
N.g —

h[x
(e,n) ~=2 (6,

whered = [A— da: A € Nx]| is an arbitrary data assignment fdg, the set of name& € N

whereX contains an assignmemt ‘= da” and g[d] is the data constraint

g8l = A\ (da=3n).
AeNx

The construch[x/n(x)] stands for the data constraint obtained froty syntactically re-
placing variablex with the valuen(x) € Data. The construch[X, 8] denotes the evaluation
for the variables inv(¢) UV(E_) that is obtained fronm by executing the assignments Xf
For instance,

nx:=da,A—d](y) =
X 3

nly) : ifyev()\{x}
d o ify=x

The construch[X, 3], ; denotes the restriction offX, ] to the variables iv(0).

Note that constraint automata are special instances of their parameterized version with

empty parameter lists for all their locations. (In this case, there is no difference between
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locations and states, and we halg = 4.)

The product construction (Definition 23) can easily be modified for parameterized con-
straint automat#; and?, with disjoint variable sets such that the unfolding of the product
P <1 P into a (non-parameterized) constraint automatiep..», generates the same TDS-

language as the produdly, > A, of the constraint automata fdah and ..

7.5 Compositional Semantics of Rebeca using Constraint

Automata

To obtain the constraint automata of the coordination and communication parts of the Re-
beca model, which is modeled in Reo, we use the algorithm in Section 7.4. For specifying
the semantics of rebecs we need parameterized constraint automata. To obtain the pa-
rameterized constraint automaton (PCA) of each rebec, we use an algorithm, shown in
Figure 7.9, to extract the PCA directly from the Rebeca code.

In the parameterized constraint automaton for each rebec,
A = (Log,Var;,vi, \lames, ~+i, LoGy;, init;)

for all the rebecs, we hawames= {start, end sendtake}, andLocy; = {idle}. For each

rebecVar; includes state variables of the rebec, local variables of each methodeaddr
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Variables: sender, state variables of the rebec, local variables
of each method

addState('ldle’) addState('Take Message’) addTransition('ldle’ to
'Take Message’, N={'start’}) addTransition(Take Message' to
‘Idle’, N={'take’, 'end’}, d_take(2)="empty’)

for each message server do begin
addTransition('Take Message' to addState(i), N={take’}, d_take(2)= MessageServerld)
sender := d_take(1)
Determine different flows of control in the message server, according to different conditions
Flag each statement with its correspondent condition
devide each flow of control into fragments:
each fragment ends with a 'send’ statement (or the end of the message server)
for each fragment do
begin
addstate(i)
addTransition(previousstatelnFragment to addState(i), N={'send’},
d_send= (receiver, requestedmessageName),
other data constraints: Condition of the fragment,
data assignments: assignment statements in that fragment)

(for the last fragment:

addTransition(previousstatelnFragment to ’ldle’, N={'send’,’end’}
d_send= (receiver, requestedmessageName),
other data constraints: Condition of the fragment,
data assignments: assignment statements in that fragment)

end
end

Figure 7.9: The Algorithm for Constructing the Parameterized Constraint Automaton from
a Rebec Code
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variable which gets the value of the sender of each message.

The initial state of the PCA (Parameterized Constraint Automaton) of each rebec is
denoted agdle state. At the beginning all the rebecs are in thdlie state. By getting the
start signal as input from th&router, a rebec moves to itfake Messagstate, where a
message is taken from top of the queue. The data item of thegkaris assumed to be a
tuple consisting obenderof the message and timessage server namAccording to the
d_take the next state is chosen. If the message queue is empty the transition goes back to
theidle state. If not, the transition goes to the state which is the beginning of the execution
of a message server. In fact, the second iterd_tetkewhich is themessage server name
specifies the next state. The rest of the work depends on the statements of the message
servers; at the end of each message server there shall be a transition badklledtate
which has theendsignal (and maybe sendsignal) on it. We use an example, the bridge
controller, to explain the rest of the algorithm in more details in the next section.

As we mentioned before, we use a special kind of FIFO channel for modeling the
message queue. The main point is that we want to be able to realize the situation when the
gueue is empty, this cannot be done with the conventional definitions of FIFO in Reo [15,
13], so we assume that there is a special data denotethpyywhich shows that the queue

is empty. We define the behavior of message queue channel according to the constraint
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take
d_take = (self, empty)

take send
d_take = (sq0, mqQ) (sg0, mq0) := d_send
sqO := self
mao := empt
sq0 :=sql:= ... :=se
mq0 := mql := ... ;= empty
take
d_take = (sql1, mq
ng = Sq# send
Sq_ = se sql, mql) := d_send
mq0 :=mql (sd ab) -
mql := empty
take
d_take = (sg2, mg2,
SqflJ = Sq; senc
sql:=sq 2, mg2) := d_send
sq2 := self (s92, m2) = d_sen
mq0 := mgl
mqgl := mg2
mg2 := empty

Figure 7.10: Constraint Automaton for the 4-Bounded Message Queue Channel

automaton shown in Figure 7.10. In this figure we show the behavior of a bounded queue.

7.6 An Example: Bridge Controller

The bridge controller is chosen as an example to be modeled by constraint automata. This

example is described in Section 5.6, and the Rebeca code is shown in Figure 5.4. There is
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a bridge with a track where only one train can pass at a time. There are two trains, entering
the bridge in opposite directions. A bridge controller uses red lights to prevent any possible
collision of trains, and also guarantees that each train will finally pass the bridge.

Figure 7.11 shows the constraint automata for each train and Figure 7.12 shows the
constraint automata for the bridge controller. The initial state for a tramllesstate. We
move to thetake messagstate by receiving thetart signal. A train has four message
servers:initial, YouMayPassPassed and ReachBridge For each one of these message
servers there is an outgoing transition from thke messagstate. There is also another
transition which is fired when the message queue is empty. The four first transitions, each
goes to a state showing the beginning of a message server. The last one goes back to the
idle state outputting thendsignal.

As described in the algorithm of Figure 7.9, we have to consider the different flows of
control in each message server. In the message servers of the trains we only have one flow
of control. We partition each flow by th&endstatements. For example in the message
serverPassedwe have two fragments. You can see two transitions corresponding to the
sendstatements in Figure 7.11. Tleadsignal is added to the last transitions, which can
be considered as an optimization issue. Considering the controller, we have conditional

statements in message servirsve andLeave and hence more than one possible flow of
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control. The transitions generated for different flows of controls can be seen in Figure 7.12.



1. Take

start Message

5. passed

Figure 7.11: Modeling Train by Constraint Automata
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end 35
isWaiting1 := true @
send, end
isWaiting2 = true
signate-=true
isWaiting2 := false
d_send = {t2, ‘youMaypass’}
end
isWaiting2 != true
send, end
isWaiting1 = true
stgnatt-=true
isWaiting1 := false
d_send = {t1, ‘youMaypass'}
end
isWaiting1 = true

Figure 7.12: Modeling Controller by Constraint Automata



Chapter 8

Conclusion and Future Work

Actor-based modeling can help the modeler via its encapsulated constructs, and formal
verification can be used to design more dependable systems. Compositional verification
seems to be a sound way to make formal verification practical, but it can help best when
the model is modular and the modules are encapsulated and loosely coupled. That is where
the modular nature of actor-based modeling may help in formal verification.

In Rebeca, we have independent reactive objects cadleets which run concurrently
and communicate by asynchronous message passing. There is an unbounded message
gueue for each rebec. We have classes for declaring the rebecs in the model. Therefore
it is possible to reuse the code and simplify the verification process. A nonempty set of
rebecs, referred to as a component, may be used to represent a reactive system.

A system can be decomposed into components that are executed concurrently. We can
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first verify properties of these components, specified in LTL-X or ACTL by model check-
ing, and then conclude the overall system property using these latter results. Composition
of two components is a simple operation due to independence of rebecs in Rebeca. The
result is another component, while no conditions on composing components are required.

We use abstraction and symmetry to tackle state explosion problem. The asynchronous
nature of message passing in Rebeca, let us to use coarse-grained transitions which reduce
the state space and make the model simpler. Abstracting from message queues in specify-
ing system properties introduces some kind of abstraction. In our compositional approach,
we model the environment only by external messages, and the abstraction is to have these
messages in a set and not to put them in the queues. In Rebeca we do not have any restric-
tions for components in parallel composition. Also, we do not need any assumptions about
the environment, in the properties that we prove. We also use symmetry to simplify our
verification process when there are replicated components in the system.

We have enriched the modeling power of the basic message-driven, asynchronous com-
putational model of the actor-based language Rebeca by introducing a formal concept of
components for structuring a model in Rebeca and to integrate asynchrony by synchro-
nous message passing. We exploited the additional structuring mechanisms, provided by

components, in a compositional verification approach based on model-checking. Formal



150

semantics of extended Rebeca is used to establish the verification theory corresponding this
approach.

We generate a front-end tool, Rebeca Verifier, for translating Rebeca models to SMV
or Promela. Our tool supports modular verification, enabling the modeler to model check
components derived from decomposing Rebeca models. This is used in our compositional
verification approach. Abstraction techniques are applied to overcome state explosion prob-
lem.

Modular structure of Rebeca allows for an incremental development of the tool. We
started with Rebeca kernel, as a pure actor-based language, which describes a set of rebecs
in a flat structure, communicating by asynchronous message passing. SMV and Promela
code generators are both implemented for this kernel language. Promela code generator
also supports synchronous message passing which is added to Rebeca as an extension to

support globally asynchronous and locally synchronous systems.

Future Work  We defined our compositional verification approach on the simplified ver-
sion of Rebeca ignoring dynamic behavior. With some restrictions on defining components
we can use our compositional approach even in presence of dynamic creation and topology.

In presence of dynamic changing topology, we need to talk about variables of known rebecs
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of a rebec. In presence of dynamic creation, sometimes it is needed to check the value of a
specific variable for all instances of a class. Therefore, we need quantification over rebecs
and state formulas are predicates instead of propositions. Determining this subject more
precisely is one of our future works.

Our research group in Tehran and Sharif universities is working on the Rebeca Verifier
tool. Currently we are working on extending our tool to support model checking and com-
positional verification of extended Rebeca. Another team is working on translating Rebeca
to Java programs. This will give us a refinement tool which can be another step towards
building a formal methodology for reliable software development.

Direct model checking of Rebeca models is an ongoing project. Without using back-
end model checkers we can exploit Rebeca modularity more efficiently in model checking
algorithms and introduce other abstraction techniques. Data abstraction in model checking
Rebeca codes is now based on the back-end model checker approaches. We provide the
same data types as in SMV and Promela. In our future work, for direct model checking of
Rebeca codes we also need to consider the abstract interpretation of supported data types.

Furthermore, we used Rebeca for modeling security protocols, using dynamic data
structures to describe the behavior of intruders [32]. For model checking these applica-

tions, we therefore need appropriate abstraction techniques. Mitnick attack is also modeled
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in Rebeca to show how an attacker may chain simple attacks to construct a complex dis-
tributed attack.

The additional synchronous communication of messages increases the modeling power
and also serves as a formal semantic basis for modeling languages like UML. UML inte-
grates an asynchronous event driven model of computation, like that of the actor languages,
with a synchronous model of computation described by state charts. However, a compre-
hensive formal account of the intricacies involved in the interplay between synchrony and
asynchrony in UML is still missing. Currently we are investigating the formal relation-
ship between a subset of UML developed in European IST Project Omega [20] and our
extended Rebeca. This line of research can be seen as a first step to a formal account of the

integration of synchrony and asynchrony in UML.
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