
SIMULATION-BASED ANALYSIS OF TIMED
REBECA USING TEPROP AND SQL

Brynjar Magnússon
Master of Science
Software Engineering
June 2012
School of Computer Science
Reykjavík University

M.Sc. RESEARCH THESIS

ISSN 1670-8539

Simulation-based Analysis of Timed Rebeca using
TeProp and SQL

by

Brynjar Magnússon

Research thesis submitted to the School of Computer Science
at Reykjavík University in partial fulfillment of

the requirements for the degree of
Master of Science in Software Engineering

June 2012

Research esis Committee:

Dr. Marjan Sirjani, Supervisor
Associate Professor, Reykjavík University, Iceland

Dr. Luca Aceto
Professor, Reykjavík University, Iceland

Dr. Carolyn L. Talcott
Program Manager, Computer Science Laboratory, SRI Interna-
tional

Copyright
Brynjar Magnússon

June 2012

Simulation-based Analysis of Timed Rebeca using TeProp and
SQL

Brynjar Magnússon

June 2012

Abstract

As software systems get larger, more complex and time critical, we need
formal methods to get them right. In order to get practitioners to use
formal methods we need easy to use modeling and specification languages
and powerful and scalable verification tools. We present TeProp, a timed
event-based property language, which is designed to reason about timed
occurrence of events in a natural way and be easy to use for specifying
properties.

We also present TRSim, a simulation tool-kit for working with simula-
tions of Timed Rebeca models. McErlang is used to simulate the models
while the occurrences of events are stored in a relational database. TeProp
properties can then be checked against multiple simulation runs, using
a query client that transforms a TeProp property to an SQL query. e
SQL query is then executed on the database which determines whether
the property is satisfied over the simulation runs in the database.

To show the capability of TeProp and the TRSim tool-kit we provide few
case studies and show that we are able to detect a flaw in previously ana-
lyzed model.

Hermunargreining á Timed Rebeca með TeProp og SQL

Brynjar Magnússon

Júní 2012

Útdráttur

Jafnfram því sem hugbúnaður verður stærri, flóknari og háðari tíma þur-
fum við formlegar aðferðir til að vel takist til. En til að fá iðkendur
til að nýta sér formlegar aðferðir þurfum við aðgengileg líkana-og skil-
greiningarmál ásamt öflugum og skalanlegum sannreyningar-tólum. Við
kynnum TeProp, tíma og atburðabundið skilgreiningarmál, sem var han-
nað til að takast á við tímaháða röðun atburða á eðlilegan hátt, jafnfram
því að vera auðvelt í notkun við skilgreiningu eiginleika.

Við kynnum einnig TRSim, samansafn forrita til að vinna með hermanir
af Timed Rebeca líkönum. McErlang er notað til að herma líkönin og
upplýsingar um atburði skráð í venslagagnagrunn. TeProp eiginleikar eru
svo sannreyndir á móti öldi hermanna með hjálp fyrirspurnarbiðlara sem
þýðir TeProp eiginleika yfir í SQL fyrirspurn. SQL fyrirspurnin er svo
keyrð á móti gagnagrunninum og ákvarðar hvort eiginleikinn er sannur
fyrir hermunar keyrslurnar í gangagrunninum.

Til að sýna fram á möguleika TeProp og TRSim kynnum við nokkur
dæmi og sýnum að við getum fundið villu í líkani sem hafði verið kannað
áður.

To my fiancé Aðalheiður Kristín Jónsdóttir

vii

Acknowledgements

Dr. Marjan Sirjani, for convincing me to do a research thesis and introducing me to
research in software engineering. is work would never have been done without her
great vision and expertise.

Dr. Luca Aceto and Dr. Carolyn L. Talcott for being in my committee and for their
helpful comments.

Haukur Kristinsson for all the discussions and collaboration during the last year.

My family for all their love and support.

Högni Eyjólfsson for offering interesting problems to work on when I was in a need
for a context switch.

For proofreading this thesis, I thank Guðmundur Narfi Magnússon.

I would also like to thankmy fellow students and faculty at Reykjavík University.

e work in this thesis is partially supported by the project “Timed Asynchronous
Reactive Objects in Distributed Systems: TARO” (nr. 110020021) of the Icelandic
Research Fund.

viii

ix

Contents

Contents x

List of Figures xii

List of Tables xiii

List of Listings xv

1 Introduction 1
1.1 Contributions . 2
1.2 Overview of the esis . 2

2 Background 5
2.1 Actor Model . 5
2.2 Timed Rebeca . 6
2.3 Timed Property Languages . 8

3 Property Language 11
3.1 Patterns . 14
3.2 Syntax . 15
3.3 Semantics . 16
3.4 Mapping to SQL . 22

3.4.1 Database Design . 22
3.4.2 e Mapping . 23

3.5 SQL Examples . 27

4 Simulation and the TRSim Tool-set 29
4.1 Simulation of Timed Rebeca Models 29

4.1.1 When to Stop the Simulation 30
4.1.2 e Right Number of Simulation Runs 31

x

4.1.3 Models With Zeno Behavior 32
4.2 TRSim Architecture . 33

4.2.1 Timedreb2erl . 34
4.2.2 PrepareDB . 34
4.2.3 Logger . 35
4.2.4 Query Tool . 35

5 Experimental Results 37
5.1 Experimental Setup . 37
5.2 e time benefit of simulation . 38
5.3 Event graph . 38
5.4 Simple Communication Protocol 39
5.5 Ticket Service . 42
5.6 Sensor Network . 47
5.7 Multi Flight Booking . 52

6 Related Work 57
6.1 Temporal-SQL . 57
6.2 XAV . 57
6.3 Trace Server . 58
6.4 TLtoSQL . 58

7 Conclusion and Future Work 61
7.1 Conclusion . 61
7.2 Future Work . 62

Bibliography 63

Appendices 67

A Sequence Diagrams 67
A.1 Simple Communication Protocol 67
A.2 Ticket Service . 69
A.3 Sensor Network . 72
A.4 Multi Flight Booking . 75

B Revised Models 77
B.1 Ticket Service . 77

xi

List of Figures

2.1 Timing primitives of Timed Rebeca 7
2.2 Abstract syntax of Timed Rebeca 7

3.1 Syntax of TeProp . 15
3.2 Visualization of Finally . 17
3.3 Visualization of Before . 17
3.4 Visualization of Globally with Implies 18
3.5 Visualization of Finally with Leads-to 19
3.6 Formal description of TeProp . 21

4.1 Example of a simulation run where we get different results for a prop-
erty depending on where we stop the simulation 30

4.2 Architectural overview of the TRSim tool-set. 34
4.3 Screen capture of the Query Tool interface 36

5.1 Example of an event graph. 39
5.2 Event graph of the simple communication protocol model. 39
5.3 Event graph of the ticket service model. 42
5.4 Event graph of the sensor network model. 47
5.5 Event graph of the multi flight booking model. 52

A.1 Sequence diagram of a run of the simple communication protocol
where the send and acknowledge messages where delivered in first try. 67

A.2 Sequence diagram of a run of the simple communication protocol
where the first acknowledge messages is dropped and the sender agent
retransmits the message. 68

A.3 Sequence diagram of a run of the simple communication protocol
where the first send messages is dropped and the sender agent re-
transmits the message. 68

xii

A.4 Sequence diagram of a run of the ticket service where a ticket was
issued for the first request before the agent checked. 69

A.5 Sequence diagram of a run of the ticket service where the ticket was
not issued by the first ticket service before the agent checked. 70

A.6 Sequence diagram of a run of the ticket service where no ticket was
issued by either ticket service in the first try. 70

A.7 Sequence diagram of a run of the ticket service where we can see the
flaw in the model. 71

A.8 Sequence diagram of a run of the sensor network where the scientist
acknowledges the message. 72

A.9 Sequence diagram of a run of the sensor network where the scientist
is rescued in time. 73

A.10 Sequence diagram of a run of the sensor network where the scientist
dies. 74

A.11 Sequence diagram of a run of the multi flight booking where no flight
is successfully booked. 75

A.12 Sequence diagram of a run of the multi flight booking where one
flight is successfully booked. 76

A.13 Sequence diagram of a run of the multi flight booking where both
flights are successfully booked. 76

xiii

List of Tables

3.1 Mapping from TeProp to SQL . 26

5.1 Comparison of the time required for the same runs using simulation
and execution. 38

5.2 Overview of TeProp properties checked for the simple communica-
tion protocol. 40

5.3 Environment settings used for the simulation of the ticket servicemodel. 43
5.4 Overview of TeProp properties checked for the ticket service. 43
5.5 Overview of TeProp properties checked for the revised ticket service. 44
5.6 Environment settings used for the simulation of the sensor network

model. 48
5.7 Overview of TeProp properties checked for the sensor network. . . . 48
5.8 Environment settings used for the simulation of themulti flight book-

ing model. 53
5.9 Overview of TeProp properties checked for the multi flight booking. 53

xiv

xv

List of Listings

3.1 SQL for G(senderAgent.start()→ F[0, 10]receiverAgent.send()) . . 27
3.2 SQL for F(senderAgent.start(){ F[0, 8]receiverAgent.send()) . . . 27
3.3 SQL for F receiverAgent.ack() . 27
3.4 SQL for senderAgent.start() B[0, 5]senderAgent.ack() 28

4.1 Example of a reactive class modified to stop after 100 iterations. . . 31
4.2 Example of a SQL function to decide when to stop simulating . . . 32

5.1 Timed Rebeca code for the simple communication protocol model. 41
5.2 Timed Rebeca code for the ticket service model. 46
5.3 Timed Rebeca code for the sensor network model. 49
5.4 Timed Rebeca code for the multi flight booking model. 54

B.1 Timed Rebeca code for the revised ticket service model. 77

xvi

1

Chapter 1

Introduction

In recent years, there has been an explosion in the number of embedded systems we
interact with each day. Without even realising it we depend on these systems and even
trust them for our lives. ese embedded systems range from smart phones, traffic
lights, elevators and even cars; and we often refer to them as reactive systems since
they react to certain events. A failure in such a system can have catastrophic effects,
dissatisfied customers, damaged reputation, financial loss and even loss of lives.

Imagine driving your car on a sunny summer day when you suddenly notice that the
brakes are not working and within seconds you hit the car in front of you. As your
head hits the steering wheel it is clear that the airbag controller malfunctioned, and
then 5 seconds later the airbag inflates doing you no good. During recovery you are
told that a software bug caused your accident.

e rise of internet services during the same time also emphasizes the importance of
correct systems. Systems capable of handling requests from millions of people tend to
be complex, requiring distributed computing and asynchronous communication for
the best user experience. History has told us that a failure in even one component of a
distributed system can lead to major service disruption, as was the case for Microsoft
Azure Services Platform (Microsoft, 2012).

Formal methods are mathematically based techniques for modeling, specification and
verification of software and hardware systems. ey are meant to help engineers de-
velop reliable systems using mathematical approaches similar to those used in other
engineering disciplines. Just as a civil engineer makes precise calculations before con-
structing a building, software / hardware engineers should build models of their sys-
tems before development and analyze the models in order to assess whether they meet
the specified requirements.

2 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

But in order to get practitioners to use formal methods we need easy to use modeling
and specification languages and powerful verification tools. Nowadays most of the
systems have timing constraints which are as important as their functionality, so, it is
important that our methods cover timing constraints.

We use Timed Rebeca as our modeling language, as it is an actor-based language pro-
viding a natural concurrency model, object-based computation and real-time primi-
tives.

For the specification language we looked for an easy to use property language capable
of expressing properties of timed event-driven systems.

For the analysis we use simulation, as the de-facto formal verification technique, model
checking, tends to suffer from the state explosion problem.

1.1 Contributions

is thesis is an attempt to provide a suitable property language and analysis tech-
niques for Timed Rebeca.

e contributions are:

• A property language for Timed Rebeca

• A tool for storing simulation information in a relational database

• Mapping of the property language to SQL

• A tool for checking properties against simulations stored in a relational database,
using the mapping to SQL

• Experimental results

1.2 Overview of the esis

e thesis is structured as follows: Chapter 2 introduces the main concepts behind
Timed Rebeca and timed property languages. Chapter 3 introduces TeProp, its lan-
guage definition and semantics. Chapter 4 presents how we carry out simulations
and the TRSim tool-kit, its architecture and implementation. In Chapter 5 we an-
alyze four case studies using TeProp and the TRSim tool-kit. Related work is then

Brynjar Magnússon 3

discussed in Chapter 6. Finally, Chapter 7 presents conclusions and outlines future
work.

4

5

Chapter 2

Background

2.1 Actor Model

e actor model is a model of computation originally proposed by Hewitt as an agent-
based language (Hewitt, 1972), that was later developed into a concurrent object-
based language by Agha (Agha, 1986) and formalized by Talcott et al. (Agha, Mason,
Smith, & Talcott, 1997).

In the actor model, actors are the universal primitives of concurrent computation: in
response to a message that it receives, an actor can make local decisions, create more
actors, send more messages, and determine how to respond to the next message that
it receives. Actors have encapsulated states and behavior, and are capable of creating
new actors and redirecting communication links through exchange of actor identities
(Sirjani & Jaghoori, 2011).

All the actors in the system run concurrently and the message passing between them
is asynchronous.

Different interpretations, dialects and extensions of actor models have been proposed
in several domains and are claimed to be the most suitable model of computation
for some of the dominating applications, such as multi-core programming and web
services (Hewitt, 2007; Aceto et al., 2011).

6 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

2.2 Timed Rebeca

Reactive Objects Language, Rebeca, is an actor-based language with formal semantics
and model checking tools (Sirjani, Movaghar, Shali, & Boer, 2004). Rebeca was de-
signed to bridge the gap between formal verification approaches and real applications.
Its simple, message-driven and object-base computational model and Java like syntax
makes it easy to use for software engineers.

A Rebeca model consists of a set of reactive classes and the main program in which
we declare reactive objects, or rebecs, as instances of reactive classes. A reactive class
has an argument of type integer, which denotes the length of its message queue. e
body of the reactive class includes the declaration for its known rebecs, variables, and
methods (also called message servers). Eachmethod body consists of the declaration of
local variables and a sequence of statements, which can be assignments, if statements,
rebec creation (using the keyword new), and method calls. Method calls are sending
asynchronousmessages to other rebecs (or to self) to invoke the correspondingmessage
server (method). Message passing is fair, and messages addressed to a rebec are stored
in its message queue. e computation takes place by taking the message from the
front of the message queue and executing the corresponding message server (Sirjani et
al., 2004; Aceto et al., 2011).

Timed Rebeca is an extension of Rebeca adding time-related primitives to the language
(Aceto et al., 2011). In a Timed Rebeca model, each rebec has its own local clock and
message bag instead of a message queue. e timing primitives delay, now, deadline
and after were added to the syntax. In Figure 2.1 each timing primitive is explained
and Figure 2.2 shows the syntax of Timed Rebeca.

All messages that are sent are put in the receiving rebecs message bag along with their
time tag (the value of now in addition to the argument of after, if provided) and dead-
line tag. e computation then takes place by taking the message with the least time
tag and executing the corresponding message server. But before the execution of the
corresponding message server the local clock of the receiver rebec is set to the maxi-
mum value between its current value and the time tag of the message.

Brynjar Magnússon 7

• Delay: delay(t), where t is a positive natural number, will increase the value
of the local clock of the respective rebec by the amount t.

• Now: now() returns the time of the local clock of the rebec from which it
is called.

• Deadline: r.m() deadline(t), where r denotes a rebec name, m denotes a
method name of r and t is a natural number, means that the message m is
sent to the rebec r and is put in the message bag. After t units of time the
message is not valid any more and is purged from the bag. Deadlines are
used to model message expirations (timeouts).

• After: r.m() after(t), where r denotes a rebec name, m denotes a method
name of r and t is a natural number, means that the message m is sent to
the rebec r and is put in the message bag. e message cannot be taken
from the bag before t time units have passed. After statements can be used
to model network delays in delivering a message to the destination, and
also periodic events.

Figure 2.1: Timing primitives of Timed Rebeca (Aceto et al., 2011).

ModelF EnvVar∗ Class∗ Main
EnvVarF env T 〈v〉+;

MainF main { InstanceDcl∗ }
InstanceDclF C r(〈r〉∗) : (〈c〉∗);

ClassF reactiveclass C { KnownRebecs Vars MsgSrv∗ }
KnownRebecsF knownrebecs { VarDcl∗ }

VarsF statevars { VarDcl∗ }
VarDclF T 〈v〉+;

MsgSrvF msgsrv M(〈T v〉∗) { Stmt∗ }
StmtF v = e; | r = new C(〈e〉∗); | Call; | i f (e) MSt [else MSt] |

delay(t); | now();

CallF r.M(〈e〉∗) [after(t)] [deadline(t)]
MStF { Stmt∗ } | Stmt

Figure 2.2: Abstract syntax of Timed Rebeca (Aceto et al., 2011). Angle brackets 〈...〉
are used as meta parenthesis, superscript+ for repetition more than once, superscript ∗
for repetition zero or more times, whereas using 〈...〉 with repetition denotes a comma
separated list. Brackets [...] indicates that the text within the brackets is optional.
Identifiers C, T, M, v, c, and r denote class, type, method, variable, constant, and
rebec names, respectively; and e denotes an (arithmetic, boolean or nondetermistic
choice) expression.

8 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

2.3 Timed Property Languages

For the specification of models using formal methods, property languages are used to
describe the desired behaviors.

TCTL

Timed CTL, TCTL (Alur, Courcoubetis, & Dill, 1990) is a real-time extension of
computational tree logic (Clarke, Emerson, & Sistla, 1986). TCTL is interpreted
over a dense time line and contains time-constrained version of the always G, even-
tually F, strong until U, and weak until W operators, which are either existentially E
or universally A quantified over computation paths (Konrad & Cheng, 2005). It was
designed for use with finite set of real valued clocks that may be reset. As it was pro-
posed along with the real-time specification formalism time graphs, similar to timed
automata (Alur & Dill, 1994).

TCTL has been used as a property language inHyTech (Henzinger, Ho, &Toi, 1997),
Kronos (Bozga et al., 1998), and a subset in UPPAAL (Larsen, Pettersson, & Yi,
1997),

MTL

Metric Temporal Logic (Koymans, 1990) is an extension of Linear Temporal Logic
(LTL) (Pnueli, 1977) adding relative time and optional real-time constraints to the
temporal operators, sometime F, always G, and strong until U. MTL assumes a global
clock that progresses at a fixed rate.

MTL has been used as a property language in Temporal Rover (Drusinsky, 2000) and
Real-Time Maude (Wirsing, Bauer, & Schroeder, 2010) .

Brynjar Magnússon 9

TILCO

TILCO (Mattolini & Nesi, 2001) is a logic language which can be used to specify
temporal constraints in either a qualitative or a quantitative way (Bellini, Giotti, Nesi,
& Rogai, 2003). A TILCO formula is given with respect to current time and has
four basic operators, universal quantification @, existential quantification ?, until,
and since. All working with time intervals that support future and past.

TILCO has been implemented in the theorem prover Isabelle/HOL (Bellini et al.,
2003).

10

11

Chapter 3

Property Language

In this chapter we introduce our property language, timed event-based property lan-
guage, TeProp. First we motivate introducing a new language and the new operators
of our language.

We set out to find a suitable property language for Timed Rebeca (Aceto et al., 2011),
which is a timed actor based modeling language. Since we are working with the actor
model (Hewitt, 1972) and its asynchronous message passing, the property language
needs to be able to reason about the timing and occurrence of the messages more than
the values of some variables inside the actors. is leads us towards an event-based
language where an event occurs each time a message is received by an actor, rather
than a language working with state propositions.

After looking at a selection of timed property languages in the literature such as Metric
Temporal LogicMTL (Koymans, 1990), TimedComputationTree Logic TCTL (Alur
et al., 1990), TILCO (Mattolini & Nesi, 2001) and Timed Propositional Temporal
Logic TPTL (Alur & Henzinger, 1994), we found that none of them does naturally
fit our event-based properties. ese languages can be used to specify your properties,
but it would result in long and complicated formulas with high likelihood of mistakes.
is is mainly because they are all designed around state proposition where we can say
that something lasts for some time. For example, we can say that the value of α will be
the same for the next 5 time units. is is not possible in the event based setting where
an event only occurs at one time unit and tells us nothing about what will happen in
the future, and we cannot say an event will stay the same for x time units.

is leads us to define a new language based on the language we found to be closest to
our needs, MTL, along with influence from the property patterns in (Abid, Dal Zilio,
& Le Botlan, 2011), (Bellini, Nesi, & Rogai, 2009) and (Konrad & Cheng, 2005).

12 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

e reason we found MTL to be closest to our needs instead of for example TCTL
(used in the state of the art timed model checker UPPAAL (Larsen et al., 1997)) is the
timing model. MTL uses relative intervals while TCTL uses multiple clocks that can
be reset. Since we are working with event based systems using the notion of a single
global clock the relative intervals are a natural fit.

As for the design of TeProp our goal was to create a language that was easy to use by
practitioners, applicable for model checking, simulation and execution and capable of
specifying properties about the timed occurrence of events in a natural way. is focus
has restricted TeProp compared to MTL, which was in line with our goal to have an
easy to use language. At the same time using timed property patterns we show that
we can specify a wide range of properties using TeProp.

Below we give a brief explanation of MTL and its syntax and semantics, and the pat-
terns that led us to TeProp.

MTL (Koymans, 1990) is an extension of Linear Temporal Logic (LTL) (Pnueli, 1977)
adding optional real-time constraints to the temporal operators.

MTL Syntax (Ouaknine & Worrell, 2008)
Given a set P of atomic propositions, the formulas of MTL are built from P using
Boolean connectives, and time-constrained versions of the until operator U as fol-
lows:

φ ::= p | ¬ φ | φ ∧ φ | φ UI φ

where I ⊆ (0,∞) is an interval over the non-negative reals with endpoints inN ∪ {∞}.
Further connectives can be defined following standard conventions. In addition to
propositions > (true) and ⊥ (false), and to disjunction ∨, the constrained eventually
operator FI φ ≡ > UI φ and the constrained always operator GI φ ≡ ¬ FI ¬ φ are
defined.

MTL Semantics (Ouaknine & Worrell, 2008)
Here we show the pointwise semantics ofMTL, for the interval semantics see (Ouaknine
& Worrell, 2008). In the pointwise semantics, MTL formulas are interpreted over
timed words. Given an alphabet of events Σ, a timed word ρ is a finite or infinite
sequence (σ0 , τ0)(σ1 , τ1). . . where σi ∈ Σ and τi ∈ R+, such that the sequence
(τi) is strictly increasing and non-Zeno (i.e., it is either finite or it diverges to in-
finity). e requirement of non-Zenoness is closely related to the condition of finite
variability in the continuous semantics. It reflects the intuition that a system has only
finitely many state changes in bounded time interval. Given a (finite or infinite) timed

Brynjar Magnússon 13

word ρ = (σ, τ) over alphabet 2P and an MTL formula φ, the satisfaction relation
ρ, i |= φ (read ρ satisfies φ at position i) is defined inductively, with the classical rules
for Boolean operators, and with the following rule for the “until” modality:

ρ, i | = φ1 UI φ2 iff there exists j such that i < j < |ρ|, ρ, j |= φ2, τ j − τi ∈ I,

and ρ, k |= φ1 for all k with i < k < j.

While defining the language we looked into the literature of timed property patterns
(Abid et al., 2011), (Bellini et al., 2009) and (Konrad & Cheng, 2005) along with
papers related to the untimed property languages (Dwyer, Avrunin, & Corbett, 1999)
and decided on the following properties as the ones most important for us to be able
to express. e first five are from (Koymans, 1990) and the sixth one is from (Bellini et
al., 2009). Variations of these patterns also appear in (Abid et al., 2011) and (Konrad
& Cheng, 2005) but are mainly focusing on state-based models.

• Maximal distance between events

• Exact distance between events

• Minimal distance between events

• Periodicity of an event

• Bounded response time for an event

• Precedence of an event before another event

Since the standardUntil operator in temporal logic is expressing that a state-proposition
should hold until something happens and we are only concerned with the order and
occurrence of instantaneous events we introduce the Before operator.
For example for stating that: e1 precedes e2 in the next 10 time units, we say e1 B[0, 10] e2,
while in MTL this would be ¬((¬e1) U[0, 10] e2) ∧ F[0, 10] e2.

14 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

3.1 Patterns

Below are the property patterns that influenced TeProp along with textual descrip-
tion, and the MTL and TeProp formulas. You can clearly see how MTL influenced
TeProp.

Maximal distance
Maximal distance between an event and its reaction, for example, every e1 is followed
by an e2 within x time units.
MTL: G(e1 → F[0, x] e2)
TeProp: G(e1 → F[0, x] e2)

Exact distance
Exact distance between events, for example, every e1 is followed by an e2 in exactly x
time units.
MTL: G(e1 → F[x, x] e2)
TeProp: G(e1 → F[x, x] e2)

Minimal distance
Minimal distance between events, for example, two consecutive events e are at least x
units apart.
MTL: G(e→ ¬ F[0, x] e)
TeProp: G(e→ ¬ F[0, x] e)

Periodicity
Periodicity, for example, event e occurs regularly with a period of x time units.
MTL: F e ∧ G(e→ (F[x, x] e ∧ G[0, x − 1] ¬ e))
TeProp: F e ∧ G(e→ (F[x, x] e ∧ ¬ F[0, x − 1] e))

Bounded response
Bounded response, for example, each occurrence of an event e is responded within a
maximum number of time units.
MTL: ∃x G(e1 → F[0, x] e2)
TeProp: G(e1 → F[0, x] e2) - Note: the tool can be extended such that the user can
define a range of values for x.

Brynjar Magnússon 15

Precedence
Precedence, for example, within the next x time units, the occurrence of e1 precedes
the occurrence of e2.
MTL: ¬((¬e1) U[0, x] e2) ∧ F[0, x] e2
TeProp: e1 B[0, x] e2

Note: Although from the above formulas it seems that TeProp and MTL have minor
differences, when we have more complicated formula TeProp can be easier to use in
the event based setting. For example, stating that at least once after an occurrence of
e1, within the next 8 time units, e2 precedes e3. In MTL it will be F(e1 → (¬((¬e2)
U[0, 8] e3) ∧ F[0, 8] e3 ∧ e1)), while in TeProp this would be F(e1{ e2 B[0, 8] e3). In the
state space setting MTL is more expressive as not all MTL formulas can be expressed
in TeProp, as it was designed for use in the event based setting.

3.2 Syntax

φ ::= ¬φ | φ ∧ φ | φ ∨ φ | (φ) | FI e | FI (e{ φ) | GI (e→ φ) | e BI e
I ::= ε | [〈Integer〉, 〈Integer〉] | [〈Integer〉, end]

Figure 3.1: Syntax of TeProp. e stands for event and can include additional informa-
tion that can be used to determine if an matching event has occurred. When used with
Timed Rebeca the syntax for an event is instance.msgsrv(conditions) where conditions is
a Boolean formula referring to the parameters of the event.

16 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

3.3 Semantics

Informal Description

An event in Timed Rebeca happens when a message is taken from the front of the mes-
sage queue and executed. Inside each event the following information is stored:

• Instance name: the instance name of the rebec called.

• Message server: the name of the message server called.

• Parameters: the parameters passed to the message server.

• Time: the time when the message was taken off the message queue.

• Sender: the instance name of the sender rebec.

e property language is designed to reason about the timing and occurrence of these
events and has five operators, G, F, B,{, and→ where the first three operators work
with time intervals. e interval defines when the formula should hold in respect to
the current time and consists of two non-negative integers inside brackets [from, to].
e current time instant is represented by 0, positive integer represents the future and
the symbol end can be used to refer to the last time of any event in the system, this
is useful to be able to check if something holds from some point in time till the end.
Omitting an interval for an operator is the same as using the interval [0, end].

Event: instance.msgsrv(conditions). An event is selected with its instance name, mes-
sage server and time. Optional conditions are given as a Boolean formula that can
refer to the event’s parameters as well as to the instance name of the sender using the
keyword sender. In the following when we say an event matching e, we mean an event
matching the instance name, message server and conditions of e.

Brynjar Magnússon 17

Finally in combination with Event1: F[i1, i2] e. An event matching e will happen
somewhere on the interval [i1, i2].

..

F[0, 10] e1

..
e1

..
e1

.

[0, 10]

.
0

..
2

..
4

..
6

..
8

..
10

..
12

..
14

..
16

..
18

..
20

..
22

..
24

..
26

..
28

.

Figure 3.2: Visualization of Finally: e formula is satisfied by the first event on the
time line, but not by the second event.

Examples:

Formula Description
F X.call() An event with instance name X andmessage server call will

happen at some point.
F[0, 10] X.call() An event with instance name X andmessage server call will

happen at some point between 0 and 10 time units.
F[5, 20] X.call(n==7) An event with instance name X andmessage server call and

the message parameter n with value 7 will happen at some
point between 5 and 20 time units.

Before: e1 B[i1, i2] e2. Within the interval [i1, i2] an event matching e1 happens at least
once before an event matching e2.

..

e1 B[4, 12] e2

..
e1

..
e2

..
e2

..
e1

..
e1

..
e2

.

[4, 12]

.
0

..
2

..
4

..
6

..
8

..
10

..
12

..
14

..
16

..
18

..
20

..
22

..
24

..
26

..
28

.

Figure 3.3: Visualization of Before: e formula is satisfied using the events the
arrows point to but not using the other events.

1 We allow Finally with Event since it’s useful to be able to say that something will or will not
happen, we do however not allow Globally with Event since saying that event happens all the time is
of limited use and can be formulated as a periodic formula using Globally with Implies.

18 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

Example:

Formula Description
X.call()B[0, 5]Y.call() Within 0 and 5 time units an event with instance name X

and message server call will happen before an event with
instance name Y and message server call.

e formula implies, e→ φ, is used in combination with globally G[i1, i2]. For every
event matching e the formula φ is evaluated using the timing of the event e as its cur-
rent time. e formula is also satisfied at time instance where there is no event that
matches e, so the formula is satisfied even if no event matches e on the interval [i1, i2].

Globally with Implies: G[i1, i2](e → φ). For every occurrence of an event matching
e on the interval [i1, i2] the evaluation of the formula φ using the timing of the event e
as its current time must be satisfied. e formula is also satisfied if no event matches
e on the interval [i1, i2].

..

G[0, 10] (e1 →F[0, 8] e2)

..
e1

..
e1

..
e2

.

[0, 10]

.

[0, 8]

.

[0, 8]

.
0

..
2

..
4

..
6

..
8

..
10

..
12

..
14

..
16

..
18

..
20

..
22

..
24

..
26

..
28

.

Figure 3.4: Visualization of Globally with Implies: e formula is satisfied by the
events shown in the figure above, but if the event e1 also happens at time zero then
the formula will no longer be satisfied.

Brynjar Magnússon 19

Examples:

Formula Description
G(X.call()→
F[0, 10] Y.call())

Every occurrence of an event with instance name
X and message server call is followed by an event
with instance name Y and message server call
within 10 time units of event X.

G(X.call()→
Y.call() B[0, 9] Z.call())

Every occurrence of an event with instance name
X and message server call is followed by an event
with instance name Y and message server call be-
fore an event with instance name Z and message
server call , both within 9 time units of event X.

e formula leads-to, e { φ, is used in combination with finally F[i1, i2]. For every
event matching e the formula φ is evaluated using the timing of the event e as its cur-
rent time.

Finally with Leads-to: F[i1, i2](e { φ). At least for one occurrence of an event
matching e on the interval [i1, i2] the evaluation of the formula φ using the timing of
the event e as its current time must be satisfied.

..

F[0, 10] (e1 { F[0, 8] e2)

..
e1

..
e1

..
e1

..
e2

.

[0, 10]

.

[0, 8]

.

[0, 8]

.

[0, 8]

.
0

..
2

..
4

..
6

..
8

..
10

..
12

..
14

..
16

..
18

..
20

..
22

..
24

..
26

..
28

.

Figure 3.5: Visualization of Finally with Leads-to: e formula is satisfied using the
events the arrows point to, the other events have no effect.

20 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

Examples:

Formula Description
F(X.call(){
F[0, 10] Y.call())

At least one occurrence of an event with instance
name X and message server call is followed by an
event with instance name Y and message server
call within 10 time units of event X.

F(X.call(){
Y.call() B[0, 9] Z.call())

At least one occurrence of an event with instance
name X and message server call is followed by an
event with instance name Y and message server
call before an event with instance name Z and
message server call, both within 9 time units of
event X.

Brynjar Magnússon 21

Formal Description

Given the alphabet Σ of all events of a model. Let π be a sequence (e0,τ0),(e1,τ1),…of
timed events where ei ∈ Σ and τi is increasing over time and inN. Whetherπ, i satisfies
an formula at position i is defined by the satisfaction relation |= as follows:

1. π, i |= e iff e is the same event as ei

2. π, i |= ¬φ iff π, i 6|= φ
3. π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2
4. π, i |= φ1 ∨ φ2 iff π, i |= φ1 or π, i |= φ2
5. π, i |= FI e iff π, j |= e for some j with i < j < |π| and τ j − τi ∈ I
6. π, i |= GI (e → φ) iff π, j 6|= e or π, j |= φ for all j with i < j < |π|

and τ j − τi ∈ I
7. π, i |= FI (e { φ) iff π, j |= e and π, j |= φ for some j with i < j < |π|

and τ j − τi ∈ I
8. π, i |= e1 BI e2 iff π, j |= e2 for some j with i < j < |π|, τ j − τi ∈ I

and π, k |= e1 for some k with i < k < j and τk − τi ∈ I
Figure 3.6: Formal description of TeProp.

22 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

3.4 Mapping to SQL

After designing TeProp we looked into ways of integrate TeProp into our existing
Timed Rebeca tools rather than developing a new tool from scratch.

We soon realized that storing the results from our Timed Rebeca simulator in a SQL
database and create a mapping from TeProp to SQL would be a convenient way of
accomplishing our goal. As by using a database for storing the simulations outputs
we get an established way of storing the simulations in an durable, organized and
structured way as well as taking advantage of the industry standard technology for
data analysis. e alternative would have been writing the simulation outputs to a
file and creating an analysis program for checking TeProp properties, which would be
more work and not necessary give better results.

Another advantage of using a database for storing the simulations, is the possibility for
the modeler to write his own SQL queries in addition to checking TeProp properties.
Example of such a query could be checking if every message server was called at least
once.

3.4.1 Database Design

But before we start explaining the mapping we first need to introduce the database
design the mapping is based on. After reviewing the information we could extract
from amodel simulation run in relation to TeProp we decided on storing the following
information in the database.

• e order of the events in the simulation

• e time of the event

• e instance name of the rebec called

• e message server called

• e instance name of the sender rebec

• e parameters passed to the message server

To store the information in a structural way to the database as well as giving the mod-
eler and possible other application access to the simulation information in a conve-
nient form, we decided that for each rebec instance we create a separate table per
message server. Each table then has the following columns:

Brynjar Magnússon 23

Column name Column data type Description
ID big integer Global counter over the simulation indication

the order of the event within the simulation
Time timestamp e time of the event within the simulation
Sender varchar(50) e instance name of the sender rebec

en for message servers with parameters we also create a separated column for each
parameter passed to the server with a data type matching the Timed Rebeca type.
As for indexing of the tables an index is set on the ID and Time columns, as both
columns are essential in retrieving the relevant events from the database in the SQL
mapping.

Since each TeProp formula is either relative to another event or the beginning of the
simulation it was essential for us to be able to retrieve the starting time of the simula-
tion, for this purpose we created a database view for each simulation that selects the
minimum time from all the tables described above. e PrepareDB tool in Subsection
4.2.2 on page 34 creates both the tables and the database view from a Timed Rebeca
model.

3.4.2 e Mapping

We do not provide a formal proof of the mapping but we explain how the mapping
is similar to the model checking algorithms; which in an essence are either finding a
path in the model’s state space, where a property is not satisfied in case of a globally
defined property, or a path where the property is satisfied in the case of a finally defined
property. If such a path is not found for the globally defined property or found for
the finally defined property the property is satisfied. Our mapping does the same but
instead of finding a path in a state space we only check a part or all of a simulation
trace. Please note that since we are only checking a set of execution paths, and not the
whole state space, we can not claim that we prove a property even though it is satisfied
for all our simulation traces. But if a property is not satisfied for one simulation trace,
then the simulation trace is a so called counter example that proves that the property
is not satisfied for all runs.

To give a top-down view of the mapping we start with the base SQL query that is
the same for all properties and then go into how we retrieve information about events
and the recursive mapping of valid TeProp property expressions. e purpose of the

24 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

base query is providing a starting point for the time in the recursive mapping. It
also provides the result of the satisfiability of the property over a simulation run in a
uniform way. e base query is as follows:

• select ’satisfied’ from [database view storing the starting time of the simulation]
where ([the outcome of the mapping of a TeProp property to SQL])

e way the mapping works is that if the result of the SQL statement for a TeProp
property is satisfied then one record with the text “satisfied” is returned. We therefore
map each valid TeProp property expression to an SQL statement that returns whether
it is satisfied or not.

When a TeProp formula is nested within another TeProp formula its current time is
set to the time of the associated event in the parent formula. We call the associated
event of the outer formula the parent event. Example of a nested formula is:

• F[0, 10](e1 {F[0, 5]e2)

In the example we have the parent formula F[0, 10](e1 { φ), the parent event e1 and
the inner formula F[0, 5]e2. When the nested formula is evaluated the inner formula
is evaluated for each parent event e1 found on the interval [0, 10] and the current time
for the inner formula is set to the time of the parent event. So, the time interval [0,5]
of the inner formula is relative to the occurrence time of the parent event e1 which is
now the current time.

In the mapping we incorporate this behavior by passing a reference to the parent for-
mula to each inner formula, such that each formula knows its current time. e starting
time of the simulation is then passed as the current to the outermost formula.

But before we start explaining the mapping of the TeProp property expressions to SQL
we first need to determine what information we need to retrieve from the database for
the mapping:

• Retrieve all occurrences of event e2 that happened after e1 at a specific time
interval[i1, i2] relative to e1

is is essential in order to reason about the occurrence of events, and can be set
forward in an abstract SQL query as:

• select [the ID of the event e2] from [the table storing events e2] where [the ID of
event e2] > [the ID of event e1] and [the Time of event e2] is between [the Time
of e1 + i1] and [the Time of e1 + i2]

Brynjar Magnússon 25

e non-abstract version is shown in Table 3.1 for e[i1, i2], note that the event ex-
pression e[i1, end] is just a special case of e[i1, i2] when there is no upper limit on the
interval.

Now that we are able to retrieve from the database whether an event occurred in re-
lation to another event we can define the mapping for the TeProp property expres-
sions2:

For Finally in combination with Event, F[i1, i2] e, we check if at least one occurrence
of event e happens within the interval [i1, i2], relative to the formula’s current time.
Here we pass the SQL statement for retrieving all occurrences of event e relative to the
parent event on interval [i1, i2] to the SQL statement exists; that is satisfied if the SQL
statement passed to it returns at least one row.

For Before, e1 B[i1, i2] e2, we check if at least one occurrence of event e1 happens
within the interval [i1, i2], relative to the formula’s current time, that is then followed
by an event e2 within the rest of the same interval. Here the mapping is similar to
the mapping for Finally but in addition we have an extra check that event e2 follows
somewhere between e1 and the end of the interval.

For Finally with Leads-to, F[i1, i2](e { φ), we check if at least one occurrence of e
exists in the interval [i1, i2], relative to the formula’s current time, where the formula φ
is satisfied using the timing of event e as its current time. Here we use the exist state-
ment to check if there is an event e within the interval [i1, i2], relative to the formula’s
current time, and where the result of the SQL mapping of φ is satisfied with e as its
parent.

For Globally with Implies, G[i1, i2](e → φ), we check that no occurrence of e exists
in the interval [i1, i2], relative to the formula’s current time, where the formula φ is
not satisfied using the timing of event e as its current time. Here we use the not exits
statement to check that no event e exists within the interval [i1, i2], relative to the
formula’s current time, and where the result of the SQL mapping of φ is not satisfied
with e as its parent.

2 e full non-abstract version of the whole mapping is provided in Table 3.1

26 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

TeProp SQL
¬φ → not (φ)

φ1 ∧ φ2 → (φ1) and (φ2)
φ1 ∨ φ2 → (φ1) or (φ2)
e[i1, end] → select aliase.id from evente aliase where

aliase.id > aliasparent.id and
aliase.time >= aliasparent.time + interval i1 second

e[i1, i2] → select aliase.id from evente aliase where
aliase.id > aliasparent.id and aliase.time
between aliasparent.time + interval i1 second
and aliasparent.time + interval i2 second

F[i1, i2] e → exists(e[i1, i2])
F[i1, i2] (e{ φ) → exists((e[i1, i2]) and (φ))
G[i1, i2] (e→ φ) → not exists((e[i1, i2]) and not(φ))

e1 B[i1, i2] e2 → exists((e1[i1, i2]) and
exists(select aliase2.id from evente2 aliase2 where
aliase2.id > aliasparent.id and aliase2.time between
aliasparent.time and aliasgrandparent.time + interval i2
second))

Table 3.1: Mapping fromTeProp to SQL.e final SQL for the formula φ is the result
of the mapping, shown in this table, wrapped inside the query “select 'satisfied'
from base aliasbase where (φ)” where base is a database view that returns the
starting time of the simulation. e table aliases are used for distinguishing between
result sets in case of multiple selects on the same table, the mapping tool is responsible
for assigning unique table alias to each select statement.

Brynjar Magnússon 27

3.5 SQL Examples

To give a clear idea how the SQL queries look like we have here below some TeProp
formulas and their SQL counterpart. e formulas are for the simple communication
protocol model that you will see later in the thesis in Listings 5.1 on page 41.

1 select 'satisfied' from "base" t0_0 where (
2 not exists(
3 select t1_0.ID from "senderAgent_start" t1_0 where t1_0.ID > t0_0.ID and
4 t1_0.time >= t0_0.time and not (exists(
5 select t1_1.ID from "receiverAgent_send" t1_1 where t1_1.ID > t1_0.ID and
6 t1_1.time between t1_0.time and t1_0.time + interval '10' second
7))
8)
9)

Listing 3.1: SQL for G(senderAgent.start()→ F[0, 10]receiverAgent.send())

1 select 'satisfied' from "base" t0_0 where (
2 exists(
3 select t1_0.ID from "senderAgent_start" t1_0 where t1_0.ID > t0_0.ID and
4 t1_0.time >= t0_0.time and (exists(
5 select t1_1.ID from "receiverAgent_send" t1_1 where t1_1.ID > t1_0.ID and
6 t1_1.time between t1_0.time and t1_0.time + interval '8' second
7))
8)
9)

Listing 3.2: SQL for F(senderAgent.start(){ F[0, 8]receiverAgent.send())

1 select 'satisfied' from "base" t0_0 where (
2 exists(
3 select t1_0.ID from "senderAgent_ack" t1_0 where
4 t1_0.ID > t0_0.ID and t1_0.time >= t0_0.time
5)
6)

Listing 3.3: SQL for F receiverAgent.ack()

28 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

1 select 'satisfied' from "base" t0_0 where (
2 exists(
3 select t1_0.ID from "senderAgent_start" t1_0 where
4 t1_0.ID > t0_0.ID and t1_0.time between t0_0.time and
5 t0_0.time + interval '5' second and exists(
6 select t1_1.ID from "senderAgent_ack" t1_1 where
7 t1_1.ID > t1_0.ID and t1_1.time between t1_0.time and
8 t0_0.time + interval '5'
9)

10)
11)

Listing 3.4: SQL for senderAgent.start() B[0, 5]senderAgent.ack()

29

Chapter 4

Simulation and the TRSim Tool-set

In this chapter we discuss how Timed Rebeca models are simulated and introduce the
Timed Rebeca Simulation, TRSim, tool-set. In Section 4.1, we discuss simulation of
Timed Rebeca models and important matters to keep in mind when performing the
simulations. In Section 4.2, we discuss the architecture of TRSim.

4.1 Simulation of Timed Rebeca Models

For simulating Timed Rebeca models we useMcErlang (Fredlund& Svensson, 2007),
a model checker for Erlang, that until recently supported only simulation of timed
Erlang programs. Meaning that the simulation just executes the Erlang program while
allowing the use of hand-coded runtime monitors capable of stopping the simulation.
is means that each simulation takes as much time as the real execution, since during
the simulation, time is passing by according to the delays in the model. For the sake
of clarity we call this kind of simulation execution.

A new version ofMcErlang supports discrete-time semantics (Earle&Fredlund, 2012),
allowing us to simulate timed models without requiring the time to pass based on the
delays in the model. Here we respect the causality and ordering of the events. is
simulation has the advantage of being fast in comparison with execution by remov-
ing the time delays, and also more precise since we can align the passing of time to
the semantic of Timed Rebeca and therefore remove the time drift that occurs during
execution. For the rest of the thesis we refer to this variant as simulation.

Before we can start simulating our Timed Rebeca model, we have to create SQL
database tables using the TRSim PrepareDB tool (Subsection 4.2.2) and translate the

30 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

model to an Erlang program. For mapping the Timed Rebeca model to Erlang we
use the mapping given in (Aceto et al., 2011), adapted for the discrete-time version
of McErlang. e resulting Erlang program can then be simulated using McErlang.
During the simulation, information about each message server call, along with its pa-
rameters, sender, and time the message was executed is sent to the TRSim Logger
(Subsection 4.2.3). TRSim Logger stores the information in the SQL database tables,
created by the TRSim PrepareDB tool, for future analysis.

4.1.1 When to Stop the Simulation

For credible analysis of reactive systems using simulation data, the importance of
choosing the right place to stop the simulation is paramount. Since we are reasoning
about the timing and occurrence of the events, we are unable to distinguish between
the case of an event missing its deadline right before the end of simulation and a sim-
ulation that ended right before the occurrence of the event. See an example in Figure
4.1.

..

Simulation run

..
e1

..
e2

..
e1

..
e2

..

Simulation
end point 1

..

Simulation
end point 2

.
0

..
2

..
4

..
6

..
8

..
10

..
12

..
14

..
16

..
18

..
20

..
22

..
24

..
26

..
28

.

Figure 4.1: Example of a simulation run where we get different results for the prop-
erty G(e1 → F[0, 8] e2) depending on where we stop the simulation. If we stop the
simulation at time unit 20 we get that the property is not satisfied, as we have no
knowledge whether e2 will occur within 8 time units of the last e1. But if we stop the
simulation at time unit 28 we get that the property is satisfied, as every occurrence of
e1 is followed by e2 within 8 time units.

But the best place to stop the simulation is not always clear and depends heavily on
the model and the properties the modeler intends to check. Our suggestion is to use
any of the following ways to decide where to stop the simulation:

1. Changing the model such that it stops after few iterations. is is an ideal solu-
tion for reactive systems that have a non terminating behavior, this can be done
with a local counter inside a reactive class. See example in Listing 4.1.

2. Using the time limit option in McErlang that allows specifying how long the
simulation should be in seconds, along with the filtering option of the TRSim

Brynjar Magnússon 31

Logger, that allows you to specify one event as an end mark for the simulation.
So, we collect the data up to the time limit and then remove the data that is
collected after the last occurrence of the endmark event. is solution is ideal for
reactive systems where one event shows you that simulation iteration is finished.

3. Using the time limit option in McErlang that allows specifying how long the
simulation should be in seconds, along with executing a hand-coded SQL query
against the database to remove the unwanted events. is is the most com-
plicated solution and only intended in situations where the other two are not
applicable.

For the simulations in this thesis we used the first two options.

Note: Even though the end event of the simulation is known it is still possible to run
into situations where the timing of the last occurrence of an event is crucial. A good
example is when we want to check for a periodic behavior in a simulation. Since the
simulation is finite we cannot say that every event e is followed by e, as that is not true
for the last occurrence of e. In this case we want to specify that all e except the last
one will be followed by e. For this reason we added to our Query Tool the option to
view the latest occurrence of any event. We can then specify that all e from time 0 up
to the time unit before the last occurrence of e is followed by e.

1 reactiveclass Sensor(3) {
2 knownrebecs { Computer computer; }
3

4 statevars { int counter; }
5

6 msgsrv initial() { self.start(); }
7

8 msgsrv start() {
9 int data = ?(1,2,3,4);

10 computer.send(data);
11 counter = counter + 1;
12 if(counter <= 100) {
13 self.start() after(8);
14 }
15 }

Listing 4.1: Example of a reactive class modified to stop after 100 iterations (option
1).

4.1.2 e Right Number of Simulation Runs

No matter how simple our models are, their behavior can be complex as a result of
concurrency and non-determinism. It is therefore important to run multiple simula-

32 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

tions to try to cover all the behaviors of the model, but deciding on the right number
of simulation runs that is needed to cover all the cases for all the models is a research
project on its own. erefore we do not offer a simple formula for telling how many
simulations should be run. Instead we introduce a way for the modeler to define his
own method for deciding whether sufficient numbers of simulations have been run,
using a hand-coded SQL function that is called after each simulation. An example of
such a function is given in Listing 4.2.

1 create function EnoughSimulations()
2 returns boolean
3 as $$
4 declare
5 table_row record;
6 tmp_row record;
7 counter int;
8 begin
9 counter := 0;

10 for table_row in
11 select table_name
12 from information_schema.tables
13 where table_name like '%senderobj_ack'
14 loop
15 execute 'select count(*) as c from ' ||
16 quote_ident(table_row.table_name) into tmp_row;
17 if(tmp_row.c > 0)
18 then counter := counter + 1;
19 end if;
20 end loop;
21 return (counter > 10);
22 end;
23 $$ language plpgsql;

Listing 4.2: Example of a SQL function for deciding when to stop simulating: is
function stops the simulation process when 10 simulation runs include at least one
event with instance name senderobj and message server ack. e function is written in
the SQL Procedural Language used by the PostgreSQL (PostgreSQL, 2012) database.

We do not require the modeler to write such a function and he is free to decide upon
the number of simulations based on his expertise, but keep in mind that in most cases
you want as many simulations as possible within your time frame.

4.1.3 Models With Zeno Behavior

When simulating using the discrete time semantic of McErlang, the modeler must be
aware of the Zeno behavior (Lynch, 1996). at is an infinite number of messages
sent at the same time unit, without any after or delay, which in turn shall cause the

Brynjar Magnússon 33

simulation to stop. is can happen if the model includes, for example, a reactive class
calling itself without a delay.

Our TRSim Logger can be configured to help with the detection of the Zeno be-
havior within a model. When starting the logger the modeler specifies a limit of
events allowed to occur on the same time unit, if the number of events goes above this
limit a warning is shown to the user, who can then stop the simulation and check his
model.

4.2 TRSim Architecture

We implemented a set of tools to support the analysis of Timed Rebeca simulations
using our property language TeProp. We built upon the already established simu-
lation method of Timed Rebeca models by mapping them to Erlang and then use
McErlang for simulation. e mapping and a tool, timedreb2erl, for the translation
was introduced in (Aceto et al., 2011).

eTRSim tool-kit includes three separate programs (PrepareDB, Logger and aQuery
Tool) in addition to a modified version of timedreb2erl and a PostgreSQL database to
store the events of the simulation. We decided on using a SQL database for storing
the simulation events after looking at viable options for checking TeProp properties
over the simulation events. So, we developed a mapping from TeProp to SQL and
we automated our mapping by implementing it as a part of our Query Tool. As for
the database system itself we chose PostgreSQL (PostgreSQL, 2012) as it is a powerful
open source database system available for multiple operating systems with long his-
tory and good support for subqueries which is essential for the mapping of TeProp to
SQL.

e reason for creating a set of tools instead of just one program is to provide the
flexibility to run the simulations on a server. Multiple simulations can take quite
some time, while running the query tool on a workstation. It also makes it easy for
other programs to integrate with our tools without having to use a special interface,
since they can call them with command line parameters. It also makes it possible for
the modeler to create his own program to control the simulation process, including
the environment variables in each simulation and the number of simulations.

Figure 4.2 shows the overall architecture of the TRSim tool-kit, including the life cycle
from modeling to specification.

34 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

Database

Timed

Rebeca

Model

TeProp

Property

timedreb2erl
TRSim:

PrepareDB

McErlang
TRSim:

Logger

Erlang code

Create

tables

Events
Log

records

TRSim:

Query Tool

SQL Query

Result

Step 1: Model

Step 2:

Simulation

Step 3: Specification

Result

table

Figure 4.2: Architectural overview of the TRSim tool-set.

In the following Subsections we describe the individual programs in the TRSim tool-
set.

4.2.1 Timedreb2erl

Timedreb2erl is the mapping tool introduced in (Aceto et al., 2011) for transform-
ing Timed Rebeca models to Erlang, supporting code generation for both the Erlang
and McErlang runtime. Here we use a version where the McErlang output has been
adapted (Kristinsson, 2012) for the new discrete timed semantics. We made small
change to the mapping such that the resulting Erlang code sends a message to the
TRSim Logger each time a message server is executed including the instance name of
the rebec, the message server name, the parameters of the message, the sender of the
message and the local time of the rebec. e environment variables of the simulations
are also sent to the logger in the beginning of the simulation.

4.2.2 PrepareDB

PrepareDB is a command line Java program that creates the database tables required
for the Logger based on a Timed Rebeca model. A separate table is created for every
message server of each rebec instance using the following naming rule: SimulationID,
InstanceName and MessageServerName separated by an underscore. Each table then
includes the following columns:

Brynjar Magnússon 35

Column name Column data type Description
ID bigint e global id of the event
Time timestamp e time of the event
Sender varchar(50) e sender of the event

In addition a column is created for each parameter using the same name and data
type equivalent to its Timed Rebeca data type. e tool also creates a table for storing
information about the simulation such as the environment variables. And a database
view that selects the lowest time in any of the tables created, used to find at which
time the simulation began.

4.2.3 Logger

Logger is a command line Java program that logs all messages it receives to the database.
It uses the Erlang Jinterface to communicate with Erlang, allowing us to send and
receive messages as any other actor in the Erlang environment. e reason we chose
to implement the logger in Java rather than Erlang is the database support provided
in Java.

Due to the high number of messages the logger receives during the simulation we
are unable to keep up by inserting each record in the database at the time it arrives.
We therefor build up a data file on disk for each table in a compatible format for
bulk insert, then when the simulation run is over each file is bulk inserted into the
database.

e logger is able to detect possible Zeno behavior (Subsection 4.1.3) by counting the
number of messages received in a row tagged with the same time. If this number is
higher than the threshold passed to the program a warning of possible Zeno behavior
is printed out on the screen.

4.2.4 Query Tool

e Query Tool is a Java program with graphical interface for the analysis of simula-
tions stored in a database using the TeProp property language. e modeler can select
the database he wants to work with, write a TeProp property and check its satisfiability
over all the simulations in the database. e results are displayed in a grid showing the
number of the simulation runs, its environment parameters and whether the property
is satisfied or not for that simulation. e grid can be exported as a LTEX table. e

36 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

modeler can also view information about the simulations in the database such as the
last time unit of each event type.

For checking the TeProp property against the simulation runs in the database we use
the mapping of TeProp to SQL from Section 3.4. A SQL query is created for each
simulation and executed on the database, the result of the query determines whether
the property is satisfied or not for that simulation.

Figure 4.3: Screen capture of the Query Tool interface: here we are checking the
TeProp property “F[0, 5] agent.ticketIssued()” over simulations of the ticket service
model in Listing 5.2 on page 46.

37

Chapter 5

Experimental Results

Parallel to this project (and as a positive response to our suggestion), McErlang has
been extended (Earle & Fredlund, 2012) to support time. So, we can now use simula-
tion. In the execution the exact number of time units mentioned in the parameters of
after and delay must pass in real-time, but in simulation we can progress time respect-
ing the causality and ordering of the events. Clearly, it makes running large number
of simulations much faster and more convenient than having the same number of ex-
ecutions, and hence we can derive more precise conclusions by having larger number
of runs.

In this chapter we analyze four case studies using TeProp and the TRSim tool-kit. For
each study we ran multiple simulations and checked interesting timing properties. In
Section 5.1 we describe the experimental setup used for the simulations. In Section
5.2 we show the time benefit of simulation over execution. In Section 5.3 we describe
the graphical notation we use to give an abstracted view of the scheduling of events in
a model. In Sections 5.4 to 5.7 we introduce the case studies.

5.1 Experimental Setup

e experiments were executed on a server with Intel(R) Xeon(TM) Quad CPU
2.66GHz processor and 32GB of RAM. e machine ran 64-bit Ubuntu 10.04.4
LTS (Lucid Lynx) with Linux kernel 2.6.32-38-server, PostgreSQL 9.1.3 and Erlang
R13B03.

38 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

5.2 e time benefit of simulation

To show the time benefit of using the simulation over the execution we did 10 runs of
the ticket service model in Listing 5.2, using the environment variables for setting 1
in Table 5.3, for 1 minute. In Table 5.1 we show the time required for the same runs
using the execution. In (Aceto et al., 2011) execution was used as McErlang was not
yet supporting time.

Simulation Execution
Simulation 1 00:01:00 13:06:47
Simulation 2 00:01:00 13:04:13
Simulation 3 00:01:00 11:41:52
Simulation 4 00:01:00 13:05:52
Simulation 5 00:01:00 11:51:19
Simulation 6 00:01:00 12:51:20
Simulation 7 00:01:00 11:53:03
Simulation 8 00:01:00 12:46:09
Simulation 9 00:01:00 12:54:35
Simulation 10 00:01:00 13:00:58

Table 5.1: Comparison of the time required for the same runs using simulation and
execution. e time format is hours:minutes:seconds.

As you can see from the results the time saving of using the simulation is significant.
But keep in mind that the speed up is never the same for all models and environment
variables since it is relative to the delays and afters used.

5.3 Event graph

Before presenting the case studies, we first explain the notation we use to show an
abstracted view of the scheduling of events within a model. Event graph is a graphical
notation used to represent graphically discrete-event simulation models, with a single
type of node and two types of edges. e nodes represent events in a system and edges
correspond to the scheduling of other events (Buss, 1996). Each edge can be associated
with a Boolean condition and/or a time delay. Jagged incoming edges denote an initial
event. Here, we use an alternative notation introduced in (Aceto et al., 2011) where
we omit the time delays and replace the Boolean conditions with conditional edges,
drawn as thick arrows. Label is also placed next to each node to show in which reactive
class the event occurs. Figure 5.1 shows an example of an event graph using our

Brynjar Magnússon 39

notation where event e2 is scheduled by e1, that then schedules e3 if the condition is
fulfilled.

.. e1.
Actor 1

. e2.
Actor 2

. e3.
Actor 3

Figure 5.1: Example of an event graph.

5.4 Simple Communication Protocol

Our first case study is a simple communication protocol from (Satoh&Tokoro, 1995)
that was modeled and analyzed in (Aceto et al., 2011). e protocol consists of a
sender agent and a receiver agent at different locations using unreliable communica-
tion channel. e sender agent sends a message to the receiver agent and waits for an
acknowledgment. If the acknowledgment is not received by the sender agent within
8 time units, it retransmits the message. When the receiver agent receives a message it
sends an acknowledgment back. Communications over the communication channel
from the sender agent to the receiver agent take 2 to 4 time units and may occasionally
fail, while from the receiver agent to the sender agent it takes 1 to 3 time units and
may also occasionally fail. If the sender agent receives the acknowledgement within 8
time units the communication was successful and we terminate the execution of the
model.

Note: e sender agent retransmits the message until a successful communication can
be made.

.. initial.
Sender

. start.
Sender

.

check ack

. Sender.

send

.

Receiver

.

ack

.

Sender

Figure 5.2: Event graph of the simple communication protocol model. One interest-
ing property of the model is the possibility of infinite computation. at is if message
is dropped in every try we end up in a loop, start → check ack→ start →…

40 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

e Timed Rebeca code for the model is shown in Listing 5.1 and the accompanying
event graph in Figure 5.2. In addition, we also include sequence diagrams showing
few simulation runs in Section A.1.

For the analysis of the model we ran 100 simulations, each one until the model ter-
minated successfully. In Table 5.2 we show the TeProp properties we checked and the
results.

Description Property Result
Acknowledgment was re-
ceived.

F senderAgent.ack() Satisfied for 100%

At least one send was ac-
knowledged within 8 time
units.

F(senderAgent.start() {
F[0, 8] senderAgent.ack())

Satisfied for 100%

e delivery time is at least 2
time units.

G(senderAgent.start() → ¬
F[0, 1] receiverAgent.send())

Satisfied for 100%

e delivery time of the ac-
knowledgment was exactly 3
time units.

F(receiverAgent.send() {
F[3, 3] senderAgent.ack())

Satisfied for 33%

Table 5.2: Overview of TeProp properties checked for the simple communication
protocol.

From the results of the properties it seems that the model is behaving as intended; as
the sender receives an acknowledgement in every simulation. at is not all we can
read from the results, property 4 gives us insight into the non-determinism behavior
of the model. It shows that the time it takes from the sending of message until it is
acknowledged varies between simulations and is exactly 3 time units for 33% of the
simulation runs.

Brynjar Magnússon 41

1 reactiveclass SenderAgent(3) {
2 knownrebecs { ReceiverAgent receiverAgent; }
3
4 statevars { boolean receivedAck; }
5
6 msgsrv initial() { self.start(); }
7
8 msgsrv start() {
9 time sendDelay = ?(−1,2,3,4); // −1=fail −− 2,3,4=delays

10 if (sendDelay != −1) {
11 receiverAgent.send() after(sendDelay);
12 }
13 self.checkAck() after(8);
14 }
15
16 msgsrv ack() { receivedAck = true; }
17
18 msgsrv checkAck() {
19 if (!receivedAck) self.start();
20 }
21 }
22
23 reactiveclass ReceiverAgent(3) {
24 knownrebecs { SenderAgent senderAgent; }
25
26 statevars {}
27
28 msgsrv initial() {}
29
30 msgsrv send() {
31 time sendDelay = ?(−1,1,2,3); // −1=fail −− 1,2,3=delays
32 if (sendDelay != −1) {
33 senderAgent.ack() after(sendDelay);
34 }
35 }
36 }
37
38 main {
39 ReceiverAgent receiverAgent(senderAgent):();
40 SenderAgent senderAgent(receiverAgent):();
41 }

Listing 5.1: Timed Rebeca code for the simple communication protocol model.

42 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

5.5 Ticket Service

Our second case study is the ticket service introduced, modeled and tested in (Aceto
et al., 2011). e model consists of two ticket services and one agent. e agent
is ordering a ticket for a customer that is outside the model. e agent starts by
sending a message, requesting a ticket from the first ticket service with a deadline of
requestDeadline time units. When the ticket service receives a ticket request, it issues
the ticket by sending a message to the agent after processing the ticket. Processing the
ticket takes serviceTime1 or serviceTime2 time units. Following the ticket request the
agent checks, after checkIssuedPeriod time units, if the ticket was issued. In the case the
ticket was issued the agent continues to his next customer after newRequestPeriod time
units. Otherwise the agent tries the second ticket service immediately and as before
checks if the ticket was issued after checkIssuedPeriod time units. If the ticket was
issued from the second ticket service, the agent continues to his next customer after
newRequestPeriod time units. Otherwise the agent tries the first ticket service again
after retryRequestPeriod time units, repeating the process. e agent only accepts the
last requested ticket.

e Timed Rebeca code for the model is shown in Listing 5.2 and the accompanying
event graph in Figure 5.3. In addition we also include sequence diagrams showing few
simulation runs in Section A.2.

.. initial.
Agent

. find
ticket

.
Agent

.

retry

.

Agent

.

check
ticket

.
Agent

.

request
ticket

.

TicketService

.

ticket
issued

.

Agent

.

valid
ticket

.

Agent

Figure 5.3: Event graph of the ticket service model.

One important implementation detail of the model for the analysis, is the token vari-
able used to keep track of the last requested ticket.

For the analysis of the model we ran 600 simulations, using the 6 environment settings
in Table 5.3 (100 simulations for each setting). Each one until the token count was

Brynjar Magnússon 43

Setting Request
deadline

Check issued
period

Retry request
period

New request
period

Service
time 1

Service
time 2

1 2 1 1 1 3 7
2 2 1 1 1 4 7
3 2 2 1 1 4 7
4 2 2 1 1 3 7
5 2 4 1 1 3 7
6 2 8 1 1 3 7

Table 5.3: Environment settings used for the simulation of the ticket service model.
e first four settings are the same as in (Aceto et al., 2011).

equal to 10.000. In Table 5.4 we show the TeProp properties we checked and their
results.

Property Setting Result

Valid ticket is issued:
F agent.validTicket()

1 Not satisfied for all runs
2 Not satisfied for all runs
3 Not satisfied for all runs
4 Satisfied for 100%
5 Satisfied for 100%
6 Satisfied for 100%

Ticket request with token 5 is delivered:
F ts1.requestTicket(token == ”5”) ∨
F ts2.requestTicket(token == ”5”)

1 Satisfied for 74%
2 Satisfied for 76%
3 Satisfied for 71%
4 Satisfied for 69%
5 Satisfied for 86%
6 Satisfied for 100%

At least 4 time units between retries:
G(agent.retry()→ ¬F[0, 4] agent.retry())

1 Not satisfied for all runs
2 Not satisfied for all runs
3 Satisfied for 100%
4 Not satisfied for all runs
5 Satisfied for 100%
6 Satisfied for 100%

An issued ticket should not be accepted by
the agent while the agent is in the the process
of requesting a new ticket:
¬F(agent.checkTicket(){
agent.validTicket() B[0, 2] agent.findTicket())

1 Satisfied for 100%
2 Satisfied for 100%
3 Satisfied for 100%
4 Not satisfied for all runs
5 Not satisfied for all runs
6 Satisfied for 100%

Table 5.4: Overview of TeProp properties checked for the ticket service. e setting
column refers to the environment variables in Table 5.3.

e results of property four in Table 5.4 indicates a flaw in the Timed Rebeca code
for the model. As a ticket issued after the expiration (when checkTicket is called) of
the ticket request should not be accepted.

44 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

A review of the code confirmed the flaw. After two unsuccessful attempts to order
a ticket the agent waits retryRequestPeriod time units before requesting a new ticket.
During that time the token is not updated. Since the token is not updated the agent
will accept a ticket during this waiting time as a valid one. Even though he never
checks for the ticket and will request a new ticket as soon as waiting period ends. is
flaw can be fixed by updating the token immediately in the checkTicket message server
instead of the findTicket message server, invalidating the last requested ticket before
the waiting time starts. Figure A.7 shows a sequence diagram with the flaw.

We repeated all the simulations using the revised model in Listing B.1. e results for
the same properties as in Table 5.4 are shown in Table 5.5.

Property Setting Result

Valid ticket is issued:
F agent.validTicket()

1 Not satisfied for all runs
2 Not satisfied for all runs
3 Not satisfied for all runs
4 Not satisfied for all runs
5 Satisfied for 100%
6 Satisfied for 100%

Ticket request with token 5 is delivered:
F ts1.requestTicket(token == ”5”) ∨
F ts2.requestTicket(token == ”5”)

1 Satisfied for 74%
2 Satisfied for 74%
3 Satisfied for 78%
4 Satisfied for 65%
5 Satisfied for 87%
6 Satisfied for 100%

At least 4 time units between retries:
G(agent.retry()→ ¬F[0, 4] agent.retry())

1 Not satisfied for all runs
2 Not satisfied for all runs
3 Satisfied for 100%
4 Satisfied for 100%
5 Satisfied for 100%
6 Satisfied for 100%

An issued ticket should not be accepted by
the agent while the agent is in the the process
of requesting a new ticket:
¬F(agent.checkTicket(){
agent.validTicket() B[0, 2] agent.findTicket())

1 Satisfied for 100%
2 Satisfied for 100%
3 Satisfied for 100%
4 Satisfied for 100%
5 Satisfied for 100%
6 Satisfied for 100%

Table 5.5: Overview of TeProp properties checked for the revised ticket service. Com-
pared to Table 5.4, here you see that the forth property is satisfied for all settings. e
setting column refers to the environment variables in Table 5.3.

When we compare the results in Table 5.4 and Table 5.5 we see that for the revised
model the main difference is that no valid ticket is ever issued for setting 4 and that

Brynjar Magnússon 45

no ticket is ever accepted while the agent is in process of requesting a new ticket as
expected. e reason for no ticket being issued for setting 4 is that the checkIssued-
Period is too short compared to the serviceTime1 and serviceTime2, it takes the ticket
service longer to process the ticket request than the agent is willing to wait for a ticket.
e only reason for a valid ticket being issued in the previous run was the flaw in the
model.

When we review the results in Table 5.5 it shows that the revised model is behaving
as intended; given the right timings a valid ticket is issued in all simulation runs. We
say that a ticket is valid if it is issued by the ticket service and sent to the agent while
it is waiting for the ticket. Property 2 shows us how the different timings affect the
delivery of a single ticket, here we check when the token is 5 meaning the 5th request.
e percentage of simulation runs where ticket request for ticket number 5 is delivered
varies between 65% and 100% for settings 1 to 6. It is interesting to compare the
results from property 1 and 2 for settings 5 and 6. Property 1 shows that a valid ticket
is always issued for at least 1 of the 10.000 tickets requested in each simulation run
using setting 5. Property 2 shows that the ticket request number 5 does not always
get delivered to the ticket service using setting 5, meaning that the ticket request is
dropped. Setting 6 on the other hand always delivers the ticket request to the ticket
service. e reason for the difference between settings 5 and 6 is that for setting 5
we have checkIssuedPeriod that is only long enough if we non-deterministically get a
ticket service with process time of 3 time units, while setting 6 has checkIssuedPeriod
long enough for both processing time’s, serviceTime1 and serviceTime2. As a result of
this in setting 5 the agent can start requesting a new ticket from a ticket service while
it is still processing a previous ticket request from the agent. If the processing time
left on the previous request is more than the deadline of the current request, then the
ticket request is dropped, and is never processed by the ticket service.

46 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

1 env int requestDeadline, checkIssuedPeriod, retryRequestPeriod, newRequestPeriod, serviceTime1,
serviceTime2;

2
3 reactiveclass Agent {
4 knownrebecs { TicketService ts1; TicketService ts2; }
5
6 statevars { int attemptCount; boolean ticketIssued; int token; }
7
8 msgsrv initial() { self.findTicket(ts1); } // initialize system, check 1st ticket service
9

10 msgsrv findTicket(TicketService ts) {
11 attemptCount += 1;
12 token += 1;
13 ts.requestTicket(token) deadline(requestDeadline); // send request to the TicketService
14 self.checkTicket() after(checkIssuedPeriod); // check for issued ticket
15 }
16
17 msgsrv validTicket(int tok) {
18 //Event for TeProp
19 }
20
21 msgsrv ticketIssued(int tok) {
22 if (token == tok) {
23 ticketIssued = true;
24 self.validTicket(tok);
25 }
26 }
27
28 msgsrv checkTicket() {
29 if (!ticketIssued && attemptCount == 1) { // no ticket from 1st service,
30 self.findTicket(ts2); // try the second TicketService
31 } else if (!ticketIssued && attemptCount == 2) { // no ticket from 2nd service,
32 self.retry() after(retryRequestPeriod); // restart from the first TicketService
33 } else if (ticketIssued) { // the second TicketService replied,
34 ticketIssued = false;
35 self.retry() after(newRequestPeriod); // new request for a customer
36 }
37 }
38 msgsrv retry() {
39 attemptCount = 0;
40 self.findTicket(ts1); // restart from the first TicketService
41 }
42 }
43
44 reactiveclass TicketService {
45 knownrebecs { Agent a; }
46 msgsrv initial() { }
47 msgsrv requestTicket(int token) {
48 int wait = ?(serviceTime1,serviceTime2); // the ticket service sends the reply
49 delay(wait); // after a non−determinstic delay of
50 a.ticketIssued(token); // either serviceTime1 or serviceTime2
51 }
52 }
53
54 main {
55 Agent a(ts1, ts2):(); // instantiate agent, with two known rebecs
56 TicketService ts1(a):(); // instantiate 1st and 2nd ticket services, with
57 TicketService ts2(a):(); // the agent as their known rebecs
58 }

Listing 5.2: Timed Rebeca code for the ticket service model. Notice that we added one
extra message server to the model that is called when a ticket is issued with the current
token. is is done to be able to check when a valid ticket is issued using events.
Aceto et al. used a McErlang monitor working with states and could therefore use the
variable ticketIssued.

Brynjar Magnússon 47

5.6 Sensor Network

Our third case study is a sensor network that is introduced, modeled and analyzed in
(Aceto et al., 2011). e model consists of two sensors, a scientist, an admin and a
rescue team. e sensors are set up to monitor levels of toxic gasses near the scientist.
Each sensor sends the measured values periodically to the admin. With a period of sen-
sor0period time units for the first sensor and sensor1period for the second sensor. e
admin checks the received measurements periodically with a period of adminCheck-
Delay time units. When the measurements show dangerous toxic levels the admin
immediately notifies the scientist by a message. If the scientist does not acknowl-
edge the message within scientistDeadline time units, the admin sends the rescue team
to save the scientist. e scientist dies without a rescue within rescueDeadline time
units.

ere is a communication delay of netDelay time units between all participants in the
model.

e Timed Rebeca code for the model is shown in Listing 5.3 and the accompanying
event graph in Figure 5.4. In addition we also include sequence diagrams showing few
simulation runs in Section A.3.

..

initial

.

Sensor

.

do report

.

Sensor

.

do report

.

Admin

. initial.
Admin

. check
sensors

.
Admin

.

abort
plan

.

Scientist

.

ack

.

Admin

.

check
sci ack

.

Admin

.

check
rescue

.

Admin

.

go

.

Rescue

.

rescue
reach

.

Admin

.

scientist
dead

.

Admin

Figure 5.4: Event graph of the sensor network model.

48 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

For the analysis of the model we ran 700 simulations, using the 7 environment settings
in Table 5.6 (100 simulations for each setting). Each one for 60 seconds. In Table 5.7
we show the TeProp properties we checked and their results.

Setting Network
delay

Admin
period

Sensor 0
period

Sensor 1
period

Scientist
deadline

Rescue
deadline

1 1 4 2 3 2 3
2 1 4 2 3 2 4
3 2 1 1 1 4 5
4 2 1 1 1 4 6
5 2 1 1 1 4 7
6 2 4 1 1 4 7
7 2 4 1 1 5 7

Table 5.6: Environment settings used for the simulation of the sensor network model.
e first six settings are the same as in (Aceto et al., 2011).

Property Setting Result

e scientist will not die:
¬F admin.scientistDead()

1 Not satisfied for all runs
2 Satisfied for 100%
3 Not satisfied for all runs
4 Not satisfied for all runs
5 Not satisfied for all runs
6 Satisfied for 100%
7 Satisfied for 100%

e rescue team never sent:
¬F rescue.go()

1 Not satisfied for all runs
2 Not satisfied for all runs
3 Not satisfied for all runs
4 Not satisfied for all runs
5 Not satisfied for all runs
6 Not satisfied for all runs
7 Satisfied for 100%

e admin never misses an acknowledgement
as result of ordering of events within a time
unit:
G(admin.checkScientistAck()→
¬F[0, 0] admin.ack())

1 Not satisfied for all runs
2 Not satisfied for all runs
3 Not satisfied for all runs
4 Not satisfied for all runs
5 Not satisfied for all runs
6 Not satisfied for all runs
7 Satisfied for 100%

Table 5.7: Overview of TeProp properties checked for the sensor network. e setting
column refers to the environment variables in Table 5.6.

From the results of the properties it seems that the model is behaving as intended; the
rescue team is sent when the scientist does not acknowledge within the time limit and
sadly the scientist dies in case the rescue team does not reach him in time. e model
shows well how timings can have dramatic effects on the results. It is interesting to
compare the results for property 1 and 2, where we see that for settings 2 and 6 the

Brynjar Magnússon 49

scientist does not die as the rescue team is sent for him. But for setting 7 the scientist
does not die although no rescue team is sent, as the scientist acknowledges the warning
message in time. We also see from property 3 that the timings for setting 7 avoids
sending the rescue team on the same time unit as the scientist acknowledges.

1 env int netDelay;
2 env int adminCheckDelay;
3 env int sensor0period;
4 env int sensor1period;
5 env int scientistDeadline;
6 env int rescueDeadline;
7
8 reactiveclass Sensor {
9 knownrebecs {

10 Admin admin;
11 }
12
13 statevars {
14 int period;
15 }
16
17 msgsrv initial(int myPeriod) {
18 period = myPeriod;
19 self.doReport();
20 }
21
22 msgsrv doReport() {
23 int value;
24 value = ?(2, 4); // 2=safe gas levels, 4=danger gas levels
25 admin.report(value) after(netDelay);
26 self.doReport() after(period);
27 }
28 }
29
30 reactiveclass Scientist {
31 knownrebecs {
32 Admin admin;
33 }
34
35 msgsrv initial() {}
36
37 msgsrv abortPlan() {
38 admin.ack() after(netDelay);
39 }
40 }
41
42 reactiveclass Rescue {
43 knownrebecs {
44 Admin admin;
45 }
46
47 msgsrv initial() {}
48
49 msgsrv go() {
50 int msgDeadline = now() + (rescueDeadline−netDelay);
51 int excessiveDelay = ?(0, 1); // unexpected obstacle might occur during rescue
52 delay(excessiveDelay);
53 admin.rescueReach() after(netDelay) deadline(msgDeadline);
54 }
55 }
56
57 reactiveclass Admin {
58 knownrebecs {
59 Sensor sensor0;
60 Sensor sensor1;
61 Scientist scientist;
62 Rescue rescue;

50 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

63 }
64
65 statevars {
66 boolean reported0;
67 boolean reported1;
68 int sensorValue0;
69 int sensorValue1;
70 boolean sensorFailure;
71 boolean scientistAck;
72 boolean scientistReached;
73 boolean scientistDead;
74 }
75
76 msgsrv initial() {
77 self.checkSensors();
78 }
79
80 msgsrv report(int value) {
81 if (sender == sensor0) {
82 reported0 = true;
83 sensorValue0 = value;
84 } else {
85 reported1 = true;
86 sensorValue1 = value;
87 }
88 }
89
90 msgsrv rescueReach() {
91 scientistReached = true;
92 }
93
94 msgsrv checkSensors() {
95 if (reported0) reported0 = false;
96 else sensorFailure = true;
97
98 if (reported1) reported1 = false;
99 else sensorFailure = true;

100
101 boolean danger = false;
102 if (sensorValue0 > 3) danger = true;
103 if (sensorValue1 > 3) danger = true;
104
105 if (danger) {
106 scientist.abortPlan() after(netDelay);
107 self.checkScientistAck() after(scientistDeadline); // deadline for the scientist to

answer
108 }
109
110 self.checkSensors() after(adminCheckDelay);
111 }
112
113 msgsrv checkRescue() {
114 if (!scientistReached) {
115 self.scientistDead();
116 scientistDead = true; // scientist is dead
117 } else {
118 scientistReached = false;
119 }
120 }
121
122 msgsrv ack() {
123 scientistAck = true;
124 }
125
126 msgsrv checkScientistAck() {
127 if (!scientistAck) {
128 rescue.go() after(netDelay);
129 self.checkRescue() after(rescueDeadline);
130 }
131 scientistAck = false;

Brynjar Magnússon 51

132 }
133
134 msgsrv scientistDead() {
135 //Event for TeProp
136 }
137 }
138
139 main {
140 Sensor sensor0(admin):(sensor0period);
141 Sensor sensor1(admin):(sensor1period);
142 Scientist scientist(admin):();
143 Rescue rescue(admin):();
144 Admin admin(sensor0, sensor1, scientist, rescue):();
145 }

Listing 5.3: Timed Rebeca code for the sensor network model. Notice that we added
one extra message server to the model that is called when the scientist dies. is is
done to be able to check properties related to the death of the scientist using events.
Aceto et al. used a McErlang monitor working with states and could therefore use the
variable scientistDead.

52 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

5.7 Multi Flight Booking

Our forth case study is a model of a multi flight booking which can be thought of as
an extended version of the ticket service where timing is crucial. Here we have related
requests which have to be served by two different servers in an atomic transaction.
But because of distribution without synchronization, non-desirable case can happen
when we end up with one successful request while the other was unsuccessful.

e model consists of two airlines websites and a customer. e customer starts by
finding flights; that involves finding the first flight and requesting a reservation of
a ticket from airline1 website and then finding and reserving the second flight from
airline2 website. e time it takes to find a flight is findFlightTime1 or findFlightTime2
time units. e airline websites reserves the flight for either reservationTimeout1 or
reservationTimeout2 time units. After the customer receives messages that both flights
have been reserved he starts to book the flights by sending a request to the airlines
websites. It takes the customer bookingTime1 or bookingTime2 time units to prepare
the booking order before sending it. If the airline website receives the booking order
before the reservation expires it sends a confirmation that the flight was successfully
booked, otherwise a message indicating that the flight was not booked is sent.

ere is a communication delay of networkDelay time units between all participants
in the model.

e Timed Rebeca code for the model is shown in Listing 5.4 and the accompanying
event graph in Figure 5.5. In addition we also include sequence diagrams showing few
simulation runs in Section A.4.

.. initial.
Customer

. find
flights

.
Customer

.

flight
reserved

.

Customer

.

book
flights

.

Customer

.

flight
booked

.

Customer

. reserve
flight.

AirlineWebsite

.

book
flight

.

AirlineWebsite

. reserv.
expired.

AirlineWebsite

Figure 5.5: Event graph of the multi flight booking model.

For the analysis of the model we ran 700 simulations, using the 7 environment settings
in Table 5.8 (100 simulations for each setting). In Table 5.9 we show the TeProp
properties we checked and their results.

Brynjar Magnússon 53

Setting Network
delay

Find flight
time 1

Find flight
time 2

Booking
time 1

Booking
time 2

Reservation
timeout 1

Reservation
timeout 2

1 1 1 2 1 2 2 4
2 1 2 2 2 2 5 10
3 2 1 3 0 0 2 5
4 2 2 1 0 3 4 8
5 2 2 1 2 1 2 4
6 2 3 2 1 1 8 10
7 2 3 2 1 1 15 16

Table 5.8: Environment settings used for the simulation of the multi flight booking
model.

Property Setting Result

e first ticket is successfully booked:
F customer.flightBooked(f == ”1” ∧
successful == ”true”)

1 Satisfied for 7%
2 Satisfied for 52%
3 Satisfied for 13%
4 Satisfied for 28%
5 Not satisfied for all runs
6 Satisfied for 90%
7 Satisfied for 100%

e second ticket is successfully booked:
F customer.flightBooked(f == ”2” ∧
successful == ”true”)

1 Satisfied for 9%
2 Satisfied for 54%
3 Satisfied for 50%
4 Satisfied for 48%
5 Not satisfied for all runs
6 Satisfied for 100%
7 Satisfied for 100%

All tickets are successfully booked:
¬F customer.flightBooked(successful
== ”false”)

1 Satisfied for 2%
2 Satisfied for 31%
3 Satisfied for 7%
4 Satisfied for 19%
5 Not satisfied for all runs
6 Satisfied for 90%
7 Satisfied for 100%

Booking occurred 3 or more time units
before the reservation ran out:
F (ws1.bookFlight(){
F[3, end] ws1.reservationExpired()) ∨
F (ws2.bookFlight(){
F[3, end] ws2.reservationExpired())

1 Not satisfied for all runs
2 Satisfied for 75%
3 Not satisfied for all runs
4 Satisfied for 30%
5 Not satisfied for all runs
6 Satisfied for 57%
7 Satisfied for 100%

Table 5.9: Overview of TeProp properties checked for the multi flight booking. e
setting column refers to the environment variables in Table 5.8.

From the results in Table 5.9 it seems that the model is behaving as intended; just as
in the ticket service model valid tickets are booked given the right timings. When we
compare the results for properties 1 to 3 we clearly see the impact of an unsuccessfull

54 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

booking for a flight, as both flights must be booked for a successful multi-flight book-
ing. Even though our success rate of booking a ticket for each flight is close to 50% we
can end up with only 30% of successful multi-flight bookings. Property 4 then gives
us indication whether the reservation times are too generous, this is important since
in reservation systems we want to minimize the reservation times to fulfill as many
requests as possible.

1 env int networkDelay;
2 env int findFlightTime1;
3 env int findFlightTime2;
4 env int bookingTime1;
5 env int bookingTime2;
6 env int reservationTimeout1;
7 env int reservationTimeout2;
8
9 reactiveclass Customer {

10 knownrebecs {
11 AirlineWebsite ws1;
12 AirlineWebsite ws2;
13 }
14
15 statevars {
16 boolean reservedFlight1;
17 boolean reservedFlight2;
18 boolean bookedFlight1;
19 boolean bookedFlight2;
20 }
21
22 msgsrv initial() {
23 self.findFlights();
24 }
25
26 msgsrv findFlights() {
27 int findDelay1 = ?(findFlightTime1, findFlightTime2);
28 delay(findDelay1);
29 ws1.reserveFlight(1) after(networkDelay);
30 int findDelay2 = ?(findFlightTime1, findFlightTime2);
31 delay(findDelay2);
32 ws2.reserveFlight(2) after(networkDelay);
33 }
34
35 msgsrv flightReserved(int f) {
36 if(f == 1) {
37 reservedFlight1 = true;
38 } else {
39 reservedFlight2 = true;
40 }
41
42 if(reservedFlight1 && reservedFlight2) {
43 self.bookFlights();
44 }
45 }
46
47 msgsrv bookFlights() {
48 int bookingDelay1 = ?(bookingTime1, bookingTime2);
49 delay(bookingDelay1);
50 ws1.bookFlight(1) after(networkDelay);
51 int bookingDelay2 = ?(bookingTime1, bookingTime2);
52 delay(bookingDelay2);
53 ws2.bookFlight(2) after(networkDelay);
54 }
55
56 msgsrv flightBooked(int f, boolean successful) {
57 if(successful && f == 1) {
58 bookedFlight1 = true;
59 } else if(successful) {

Brynjar Magnússon 55

60 bookedFlight2 = true;
61 }
62 }
63 }
64
65 reactiveclass AirlineWebsite {
66 knownrebecs {
67 Customer c;
68 }
69
70 statevars {
71 boolean flightReserved;
72 }
73
74 msgsrv reservationExpired(int f) {
75 flightReserved = false;
76 }
77
78 msgsrv reserveFlight(int f) {
79 flightReserved = true;
80 int reservedFor = ?(reservationTimeout1, reservationTimeout2);
81 self.reservationExpired(f) after(reservedFor);
82 c.flightReserved(f) after (networkDelay);
83 }
84
85 msgsrv bookFlight(int f) {
86 c.flightBooked(f, flightReserved) after (networkDelay);
87 }
88 }
89
90 main {
91 Customer customer(ws1, ws2):();
92 AirlineWebsite ws1(customer):();
93 AirlineWebsite ws2(customer):();
94 }

Listing 5.4: Timed Rebeca code for the multi flight booking model.

56

57

Chapter 6

Related Work

ere are two dimensions to this thesis, and therefore two types of related work. In
the background we presented timed property languages that are related to TeProp, and
here we present related work on simulations using databases.

For the analysis of simulations using databases different techniques have been applied.
In this chapter we present a brief survey of related work on simulation analysis using
databases and compare them to our work.

6.1 Temporal-SQL

Böhlen et al. introduced a transformation from Linear Temporal Logic (LTL) to
TSQL2, a temporal extension to the SQL language (Böhlen, Chomicki, Snodgrass,
& Toman, 1996). ey showed that the transformation from LTL to SQL is rather
straight forward.

Our transformation from TeProp to SQL differs from theirs in the way that we are
also working with time and use a standard SQL database.

6.2 XAV

XAV is a tracing framework for exploring large network simulation outputs (Ben-
El-Kezadri, Pujolle, & Kamoun, 2008). It uses a XML enabled database to store the
simulation data and has been implemented in the network simulator NS-2. Trace files
from the simulator are loaded into the database in an XML based XAV format that

58 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

utilizes XML pointers to reduce duplication of data. e analysis of the simulation is
then done by extracting data from the database, using queries in the SQL-like query
language XQuery.

e main difference of our approach is that the end user of TRSim writes TeProp
properties instead of SQL-like queries. We believe that writing properties in TeProp
is much easier for the user than writing SQL-like queries, as the user does not need to
know the underlying data structure.

6.3 Trace Server

Trace Server is an extension of the Java PathFinder model checking tool for storing,
querying and processing data describing the execution of a Java program being verified
(Andjelkovic & Artho, 2011). e user defines trace filters that are used to decide on
what events are sent to the trace storage, which can either be an in-memory database
or a graph database (Neo4j, 2012). For the analysis of the trace data a Java query
interface is provided.

emain difference of our approach is the underlying database and the query options.
While in TRSim the user writes a TeProp property that is converted to SQL and
executed on a standard SQL database, the user of Trace Server writes a Java code that
traverses a graph stored in a graph database.

ere is also the difference of Trace Server working with traces of a full programming
language, while we are working with a modeling language that is more abstract.

6.4 TLtoSQL

e most similar approach to us. TLtoSQL is a tool-set for rapid post-mortem ver-
ification of systems using temporal logic to SQL (Drusinsky, 2009). Post-mortem
execution log files are read into the tool-kit and automatically converted into JUnit
test cases. e JUnit test cases are then executed and the event sequence during the
run is stored in a database along with the events relative order and time.

e tool-kit then offers a graphical editor for Linear Temporal Logic (LTL) andMetric
Temporal Logic (MTL) formal specifications, the output of the editor is SQL query
code that the user can then execute on the database.

Brynjar Magnússon 59

While both TRSim and TLtoSQL make use of a database and conversion from a
property language to SQL, they differ in their intended use. TLtoSQL is meant to be
a verification framework for verifying system implementations using execution logs,
where TRSim is an integrated environment for simulation and verification of Timed
Rebeca models; making it easy to run verification queries over multiple simulations.
LTtoSQL also stores all the information in one database table, while TRSim uses a
separate table for each message server.

60

61

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we presented two main contributions. First we introduced the timed
event-based property language, TeProp, for reasoning about the timing and occurrence
of events. We presented its syntax and semantics as well as the timed property patterns
we based the language on. TeProp was designed for use with Timed Rebeca but can
be used by other event-based systems as well. As the first implementation of TeProp
we provided a mapping to SQL.

Second, we presented the TRSim tool-set for working with Timed Rebeca simula-
tions using a relational database. During the simulation of a Timed Rebeca model
information about the timing and occurrence of events are saved into a database. e
TRSim query tool can then be used to check TeProp properties by mapping them to
a SQL query and check their validity over multiple simulations. Although the TR-
Sim tool-kit makes use of TeProp it can easily be extended for analysis using other
approaches.

We also showed results of four case studies using the TeProp property language and
the TRSim tool-kit. We showed that using the TRSim tool-kit along with TeProp
properties we were able to find a flaw in previously analyzed model.

62 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

7.2 Future Work

• Establish a model checking algorithm for TeProp, such that TeProp can be
used as a property language in Timed Modere; a timed version of the Modere
model checker for Rebeca that is being developed. As well as investigate whether
TeProp can be used as a property language when model checking Timed Rebeca
models using McErlang.

• Create a run-time monitor for TeProp, such that the implementation of the
model could be tested with the same properties.

• Extend the mapping of TeProp to SQL, to allow the modeler to use one in-
terval variable in a property, like F[0, x] e. e modeler could then ask for the
maximum or minimum value for x such that the property is satisfied, for each
simulation run, if one exists within a specified threshold.

• Look into ways of guiding the simulations and try to maximize the coverage, it
would also be interesting to see if we could estimate the number of simulations
required to reach certain coverage.

• Add support for other relational databases in TRSim, such as SQLite (SQLite,
2012) and MonetDB (MonetDB, 2012), and compare their performance.

• Add static code analysis to TRSim to detect invalid models before simulating
them, for example models with the Zeno-behavior.

63

Bibliography

Abid, N., Dal Zilio, S., & Le Botlan, D. (2011). A Real-Time Specification Patterns
Language (Tech. Rep. No. LAAS 11364). Available from http://hal.archives
-ouvertes.fr/hal-00593965

Aceto, L., Cimini, M., Ingólfsdóttir, A., Reynisson, A. H., Sigurdarson, S. H., &
Sirjani, M. (2011). Modelling and Simulation of Asynchronous Real-Time
Systems using Timed Rebeca. In M. R. Mousavi & A. Ravara (Eds.), Foclasa
(Vol. 58, p. 1-19).

Agha, G. (1986). Actors: a model of concurrent computation in distributed systems.
Cambridge, MA, USA: MIT Press.

Agha, G., Mason, I. A., Smith, S. F., & Talcott, C. L. (1997). A Foundation for Actor
Computation. J. Funct. Program., 7 (1), 1-72.

Alur, R., Courcoubetis, C., & Dill, D. (1990, jun). Model-checking for real-time
systems. In Logic in computer science, 1990. lics ’90, proceedings., fifth annual ieee
symposium on e (p. 414 -425).

Alur, R., & Dill, D. L. (1994). A eory of Timed Automata. eoretical Computer
Science, 126 , 183–235.

Alur, R., & Henzinger, T. A. (1994, January). A really temporal logic. J. ACM , 41(1),
181–203.

Andjelkovic, I., & Artho, C. (2011). Trace Server: A Tool for Storing, Querying and
Analyzing Execution Traces. In Proc. JPF workshop 2011. Lawrence, USA.

Bellini, P., Giotti, A., Nesi, P., & Rogai, D. (2003). TILCO Temporal Logic for
Real-Time Systems Implementation in C++. In Seke (p. 166-173).

Bellini, P., Nesi, P., & Rogai, D. (2009, February). Expressing and organizing real-
time specification patterns via temporal logics. J. Syst. Softw., 82(2), 183–196.

Ben-El-Kezadri, R., Pujolle, G., & Kamoun, F. (2008). XAV: a tracing frame-
work for exploring large network simulation outputs. In Proceedings of the 3rd
international conference on performance evaluation methodologies and tools (pp.
76:1–76:9). ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer

http://hal.archives-ouvertes.fr/hal-00593965
http://hal.archives-ouvertes.fr/hal-00593965

64 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

Sciences, Social-Informatics and Telecommunications Engineering).
Böhlen, M. H., Chomicki, J., Snodgrass, R. T., & Toman, D. (1996). Querying

TSQL2 Databases with Temporal Logic. In Proceedings of the 5th international
conference on extending database technology: Advances in database technology (pp.
325–341). London, UK, UK: Springer-Verlag.

Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., & Yovine, S. (1998). Kro-
nos: AModel-Checking Tool for Real-Time Systems. In A. J. Hu&M. Y. Vardi
(Eds.), Cav (Vol. 1427, p. 546-550). Springer.

Buss, A. H. (1996). Modeling with event graphs. In Proceedings of the 28th conference
on winter simulation (pp. 153–160). Washington, DC, USA: IEEE Computer
Society.

Clarke, E. M., Emerson, E. A., & Sistla, A. P. (1986, April). Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst., 8(2), 244–263.

Drusinsky, D. (2000). eTemporal Rover and the ATGRover. In Spin (p. 323-330).
Drusinsky, D. (2009, 30 2009-june 3). TLtoSQL: Rapid post-mortem verification

using temporal logic to SQL code generation in the Eclipse PDE. In System of
systems engineering, 2009. sose 2009. ieee international conference on (p. 1 -5).

Dwyer, M. B., Avrunin, G. S., & Corbett, J. C. (1999). Patterns in property specifica-
tions for finite-state verification. In Proceedings of the 21st international conference
on software engineering (pp. 411–420). New York, NY, USA: ACM.

Earle, C. B., & Fredlund, L. Åke. (2012). Verification of Timed Erlang Programs using
McErlang. (Accepted for publication, FORTE 2012)

Fredlund, L.-A., & Svensson, H. (2007, October). McErlang: a model checker
for a distributed functional programming language. SIGPLAN Not., 42(9),
125–136.

Henzinger, T. A., Ho, P. H., & Toi, H. W. (1997). HYTECH: A Model Checker for
Hybrid Systems. International Journal on Software Tools for Technology Transfer,
1(1-2), 110–122.

Hewitt, C. (1972). Description and eoretical Analysis (Using Schemata) of PLAN-
NER: a Language for Proving eorems and Manipulating Models in a Robot
(Tech. Rep. No. 258). MIT AI Laboratory.

Hewitt, C. (2007). Coordination, Organizations, Institutions, and Norms in Agent
Systems II. In P. Noriega et al. (Eds.), (pp. 293–307). Berlin, Heidelberg:
Springer-Verlag.

Konrad, S., & Cheng, B. (2005, may). Real-time specification patterns. In Software
engineering, 2005. icse 2005. proceedings. 27th international conference on (p. 372

Brynjar Magnússon 65

- 381).
Koymans, R. (1990). Specifying Real-Time Properties with Metric Temporal Logic.

Real-Time Systems, 2(4), 255-299.
Kristinsson, H. (2012). Event-based Analysis of Real-time Actor Models. Unpublished

master’s thesis, Reykjavik University, Iceland.
Larsen, K. G., Pettersson, P., & Yi, W. (1997, October). U in a Nutshell. Int.

Journal on Software Tools for Technology Transfer, 1(1–2), 134-152.
Lynch, N. A. (1996). Distributed Algorithms. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc.
Mattolini, R., & Nesi, P. (2001, mar). An interval logic for real-time system specifi-

cation. Software Engineering, IEEE Transactions on, 27 (3), 208 -227.
Microsoft. (2012). http://blogs.msdn.com/b/windowsazure/archive/2012/03/01/windows-

azure-service-disruption-update.aspx.
MonetDB. (2012). http://www.monetdb.org.
Neo4j. (2012). http://neo4j.org/.
Ouaknine, J., & Worrell, J. (2008). Some Recent Results in Metric Temporal Logic.

In Proceedings of the 6th international conference on formal modeling and analysis
of timed systems (pp. 1–13). Berlin, Heidelberg: Springer-Verlag.

Pnueli, A. (1977, 31 1977-nov. 2). e temporal logic of programs. In Foundations
of computer science, 1977., 18th annual symposium on (p. 46 -57).

PostgreSQL. (2012). http://www.postgresql.org.
Satoh, I., & Tokoro, M. (1995). Time and Asynchrony in Interactions among Dis-

tributed Real-Time Objects. In Proceedings of the 9th european conference on
object-oriented programming (pp. 331–350). London, UK,UK: Springer-Verlag.

Sirjani, M., & Jaghoori, M. M. (2011). Formal modeling. In G. Agha, J. Meseguer,
& O. Danvy (Eds.), (pp. 20–56). Berlin, Heidelberg: Springer-Verlag.

Sirjani, M., Movaghar, A., Shali, A., & Boer, F. S. de. (2004, June). Modeling and
Verification of Reactive Systems using Rebeca. Fundam. Inf., 63(4), 385–410.

SQLite. (2012). http://www.sqlite.org/.
Wirsing, M., Bauer, S. S., & Schroeder, A. (2010). Modeling and Analyzing Adap-

tive User-Centric Systems in Real-Time Maude. In P. C. Ölveczky (Ed.), Rtrts
(Vol. 36, p. 1-25).

66

67

Appendix A

Sequence Diagrams

A.1 Simple Communication Protocol

receiver sender

initial

initial

start

send

ack

checkAck

Figure A.1: Sequence diagram of a run of the simple communication protocol where
the send and acknowledge messages where delivered in first try.

68 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

receiver sender

initial

initial

start

send

checkAck

start

send

ack

checkAck

Figure A.2: Sequence diagram of a run of the simple communication protocol where
the first acknowledge messages is dropped and the sender agent retransmits the mes-
sage.

receiver sender

initial

initial

start

checkAck

start

send

ack

checkAck

Figure A.3: Sequence diagram of a run of the simple communication protocol where
the first send messages is dropped and the sender agent retransmits the message.

Brynjar Magnússon 69

A.2 Ticket Service

agent tService1 tService2

initial

initial

initial

findTicket

requestTicket

ticketIssued

validTicket

checkTicket

retry

Figure A.4: Sequence diagram of a run of the ticket service where a ticket was issued
for the first request before the agent checked. Note: this is only the beginning of the
simulation run.

70 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

agent tService1 tService2

initial

initial

initial

findTicket

requestTicket

checkTicket

findTicket

requestTicket

ticketIssued

validTicket

checkTicket

ticketIssued

retry

Figure A.5: Sequence diagram of a run of the ticket service where the ticket was
not issued by the first ticket service before the agent checked. So the agent tried the
second ticket service and got response before checking again. Notice that a ticket was
issued by the first ticket service near the end. Note: this is only the beginning of the
simulation run.

agent tService1 tService2

initial

initial

initial

findTicket

requestTicket

checkTicket

findTicket

requestTicket

checkTicket

retry

Figure A.6: Sequence diagram of a run of the ticket service where no ticket was issued
by either ticket service in the first try. Note: this is only the beginning of the simulation
run.

Brynjar Magnússon 71

agent tService1 tService2

initial

initial

initial

findTicket

requestTicket

checkTicket

findTicket

requestTicket

checkTicket

ticketIssued

validTicket

retry

Figure A.7: Sequence diagram of a run of the ticket service where we can see the flaw
in the model, the ticket issued is accepted even though the agent has already checked
for the ticket. Note: this is only the beginning of the simulation run.

72 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

A.3 Sensor Network

sensor0 sensor1 scientist rescue admin

initial

initial

initial

initial

initial

doReport

doReport

checkSensors

report

report

checkSensors

doReport

report

abortPlan

doReport

checkSensors

ack

Figure A.8: Sequence diagram of a run of the sensor network where the scientist
acknowledges the message. Note: this is only the beginning of the simulation run.

Brynjar Magnússon 73

sensor0 sensor1 scientist rescue admin

initial

initial

initial

initial

initial

doReport

doReport

checkSensors

report

report

doReport

doReport

report

report

checkSensors

doReport

doReport

report

abortPlan

report

ack

doReport

doReport

go

report

report

rescueReach

checkRescue

Figure A.9: Sequence diagram of a run of the sensor network where the scientist is
rescued in time. Note: this is only the beginning of the simulation run.

74 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

sensor0 sensor1 scientist rescue admin

initial

initial

initial

initial

initial

doReport

doReport

checkSensors

report

report

doReport

doReport

report

report

checkSensors

doReport

doReport

report

abortPlan

report

ack

doReport

doReport

go

report

report

checkRescue

scientistDead

Figure A.10: Sequence diagram of a run of the sensor network where the scientist
dies. Note: this is only the beginning of the simulation run.

Brynjar Magnússon 75

A.4 Multi Flight Booking

customer website1 website2

initial

initial

initial

findFlights

reserveFlight

flightReserved

reserveFlight

reservationExpired

flightReserved

bookFlights

bookFlight

reservationExpired

flightBooked

bookFlight

flightBooked

Figure A.11: Sequence diagram of a run of the multi flight booking where no flight
is successfully booked.

76 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

customer website1 website2

initial

initial

initial

findFlights

reserveFlight

flightReserved

reserveFlight

flightReserved

bookFlights

reservationExpired

bookFlight

flightBooked

bookFlight

flightBooked

reservationExpired

Figure A.12: Sequence diagram of a run of the multi flight booking where one flight
is successfully booked.

customer website1 website2

initial

initial

initial

findFlights

reserveFlight

flightReserved

reserveFlight

flightReserved

bookFlights

bookFlight

bookFlight

reservationExpired

flightBooked

flightBooked

reservationExpired

Figure A.13: Sequence diagram of a run of the multi flight booking where both flights
are successfully booked.

77

Appendix B

Revised Models

B.1 Ticket Service

1 env int requestDeadline, checkIssuedPeriod, retryRequestPeriod, newRequestPeriod, serviceTime1,
serviceTime2;

2
3 reactiveclass Agent {
4 knownrebecs { TicketService ts1; TicketService ts2; }
5
6 statevars { int attemptCount; boolean ticketIssued; int token; }
7
8 msgsrv initial() { self.findTicket(ts1); } // initialize system, check 1st ticket service
9

10 msgsrv findTicket(TicketService ts) {
11 attemptCount += 1;
12 ts.requestTicket(token) deadline(requestDeadline); // send request to the TicketService
13 self.checkTicket() after(checkIssuedPeriod); // check for issued ticket
14 }
15
16 msgsrv validTicket(int tok) {
17 //Event for TeProp
18 }
19
20 msgsrv ticketIssued(int tok) {
21 if (token == tok) {
22 ticketIssued = true;
23 self.validTicket(tok);
24 }
25 }
26
27 msgsrv checkTicket() {
28 token += 1;
29 if (!ticketIssued && attemptCount == 1) { // no ticket from 1st service,
30 self.findTicket(ts2); // try the second TicketService
31 } else if (!ticketIssued && attemptCount == 2) { // no ticket from 2nd service,
32 self.retry() after(retryRequestPeriod); // restart from the first TicketService
33 } else if (ticketIssued) { // the second TicketService replied,
34 ticketIssued = false;
35 self.retry() after(newRequestPeriod); // new request for a customer
36 }
37 }
38 msgsrv retry() {
39 attemptCount = 0;
40 self.findTicket(ts1); // restart from the first TicketService
41 }

78 Simulation-based Analysis of Timed Rebeca using TeProp and SQL

42 }
43
44 reactiveclass TicketService {
45 knownrebecs { Agent a; }
46 msgsrv initial() { }
47 msgsrv requestTicket(int token) {
48 int wait = ?(serviceTime1,serviceTime2); // the ticket service sends the reply
49 delay(wait); // after a non−determinstic delay of
50 a.ticketIssued(token); // either serviceTime1 or serviceTime2
51 }
52 }
53
54 main {
55 Agent a(ts1, ts2):(); // instantiate agent, with two known rebecs
56 TicketService ts1(a):(); // instantiate 1st and 2nd ticket services, with
57 TicketService ts2(a):(); // the agent as their known rebecs
58 }

Listing B.1: Timed Rebeca code for the revised ticket service model. is version fixes
the flaw discussed in Section 5.5 by incrementing the token in the checkTicket message
server.

School of Computer Science
Reykjavík University
Menntavegi 1
101 Reykjavík, Iceland
Tel. +354 599 6200
Fax +354 599 6201
www.reykjavikuniversity.is
ISSN 1670-8539

	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Contributions
	Overview of the Thesis

	Background
	Actor Model
	Timed Rebeca
	Timed Property Languages

	Property Language
	Patterns
	Syntax
	Semantics
	Mapping to SQL
	Database Design
	The Mapping

	SQL Examples

	Simulation and the TRSim Tool-set
	Simulation of Timed Rebeca Models
	When to Stop the Simulation
	The Right Number of Simulation Runs
	Models With Zeno Behavior

	TRSim Architecture
	Timedreb2erl
	PrepareDB
	Logger
	Query Tool

	Experimental Results
	Experimental Setup
	The time benefit of simulation
	Event graph
	Simple Communication Protocol
	Ticket Service
	Sensor Network
	Multi Flight Booking

	Related Work
	Temporal-SQL
	XAV
	Trace Server
	TLtoSQL

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendices
	Sequence Diagrams
	Simple Communication Protocol
	Ticket Service
	Sensor Network
	Multi Flight Booking

	Revised Models
	Ticket Service

