
Mälardalen University
School of Innovation Design and Engineering

Väster̊as, Sweden

Thesis for the Degree of Master of Science (120 credits) in Computer
Science with Specialization in Software Engineering - DVA501

USING SAFETY ANALYSIS
TECHNIQUES TO DERIVE SAFETY

PROPERTIES FOR FORMAL
VERIFICATION OF

SAFETY-CRITICAL SYSTEMS

Ermia Hassanpour
ehr20003@student.mdh.se

Examiner: Antonio Cicchetti
Mälardalen University, Väster̊as, Sweden

Supervisors: Sara Abbaspour Asadollah
Barbara Gallina
Marjan Sirjani
Mälardalen University, Väster̊as, Sweden

Industrial supervisor:
Roger Dahlgren ABB, Väster̊as, Sweden

October 7, 2022

Ermia Hassanpour Derive Safety Properties for Formal Verification

Abstract

Failure of safety-critical systems may cause severe injury to humans or the environment. In
order to ensure the safety of such systems, rigorous methods must be used. Formal verification
is one of these methods that helps in ensuring the system safety based on robust mathematical
methods. Formal verification helps to prove certain properties of the model. This mathematical
proof can strengthen the evidence for the safety claims of the system and help in standardization
and receiving certificates. Defining safety properties for formal verification, more specifically for
model checking, is very challenging. Finding the right set of properties, and writing these properties
as temporal logic formulas, are difficult tasks for safety experts, software engineers, and developers.
Model-driven development utilizes the concept of abstraction to deal with the complexity of systems
and allow for earlier safety analysis. In this thesis, we intend to use model-driven methods and
their supporting safety analysis tools to help in deriving the safety properties for model checking.

We use Timed Rebeca language and Afra model checking tool for formal verification, and CHESS
tools for modelling the system and for safety analysis. As part of CHESS, ConcertoFLA technique
includes the combination and automation of traditional safety analysis techniques that provide a
qualitative assessment of the dependability of component-based systems. Failure Propagation Trans-
form Calculus (FPTC) rules are the result of ConcertoFLA analysis. We extract safety contracts
from FPTC rules. Then, we introduce a mapping between safety contracts and temporal logic prop-
erties in Afra. We also map internal block diagrams and sequence diagrams from CHESS models
to Rebeca models to be able to perform model checking. Furthermore, we applied our approach to
two case studies and used safety analysis results to more effectively derive the safety properties,
and model check and debug the models.

i

Ermia Hassanpour Derive Safety Properties for Formal Verification

Acknowledgements

I want to extend my sincere thanks to my supervisors, Marjan Sirjani, Sara Abbaspour Asadollah
and Barbara Gallina, for the support and guidance during the process of creating and writing the
thesis and allowing us to participate in the research work at Mälardalen University. Secondly, we
would like to express our gratitude to Roger Dahlgren for helping us find and address fundamental
issues in the provided system. Last but not least, we would like to thank my family for supporting
me throughout the entire process of our studies.

Thank you very much!

Ermia Hassanpour, Väster̊as, September 2022

ii

Ermia Hassanpour Derive Safety Properties for Formal Verification

Table of Contents

1 Introduction 1

2 Background 2
2.1 Model-Driven Engineering . 2

2.1.1 CHESS . 3
2.1.2 Failure Propagation and Transformation Calculus (FPTC) 5
2.1.3 Safety Contracts . 6

2.2 Formal Verification . 6
2.3 CHESSML to Rebeca . 8

3 Related Work 9

4 Problem Formulation 10
4.1 Research Goal and Question . 10
4.2 Limitations . 11
4.3 System development research methodology . 11

5 Methods to Solve the Problem 13
5.1 Create CHESSML Diagrams from System Specification 13
5.2 Conduct the Safety Analysis with ConcertoFLA Technique 13
5.3 Mapping Internal Block Diagram to Rebeca Code 14
5.4 Mapping the Safety Contracts to Rebeca Properties 17
5.5 Model Checking via Afra tool . 19

6 Traffic Light Case Study 20
6.1 Translate the FPTC Rules into Corresponding Safety Contracts 23
6.2 Mapping Internal Block Diagram to Rebeca . 25
6.3 Mapping the Safety Contracts to Rebeca Properties 29
6.4 Model Checking via Afra tool . 31

7 Train Door Controller Case Study 34
7.1 Translate the FPTC rules into corresponding safety contracts 36
7.2 Mapping Internal Block Diagram to Rebeca . 38
7.3 Mapping the Safety Contracts to Rebeca Properties 44

8 Discussion and Future Work 46
8.1 Responses to the Research Question . 46
8.2 Future Work . 46

References 50

iii

Ermia Hassanpour Derive Safety Properties for Formal Verification

List of Figures

1 UML/OMG SysML Relationships . 3
2 CHESSML dependencies . 3
3 A screenshot of the CHESS application IDE with its available features 4
4 FPTC syntax supported in CHESS-FLA . 6
5 System development research process [1] . 12
6 An overview of our approach. 13
7 An example of Rule 1 . 14
8 An example of Rule 2 . 14
9 Mapping system Internal Block Diagram to Rebeca 15
10 Mapping a block to Rebeca . 15
11 Mapping a system block to Reactiveclass . 16
12 Map Ports to Statevars . 16
13 Map Connections to Rebeca code . 17
14 Map Self connections to Rebeca code . 17
15 Mapping safety contracts to Afra properties example 19
16 Traffic Lights states . 20
17 Internal block diagram of Controller component . 22
18 Internal block diagram of Traffic light component 22
19 Internal block diagram of Traffic light system . 22
20 Sequence diagram of Traffic light system . 24
21 Traffic light: Afra report after model checking. 31
22 Traffic light: State space. 33
23 Passenger block diagram . 34
24 Door block diagram . 35
25 Controller block diagram . 35
26 Train block diagram . 36
27 Sequence diagram of Traffic light system . 37
28 Afra’s report after model checking. 45

iv

Ermia Hassanpour Derive Safety Properties for Formal Verification

List of Codes

1 Controller FPTC rules . 23
2 Light FPTC rules . 23
3 Generated safety contracts for Controller component 25
4 Light FPTC rules . 25
5 Start point of mapper first step . 25
6 Rebeca code of all blocks rule 2 . 25
7 Crossing System block Rebeca code . 26
8 Rebeca code for the Light and Controller components after applying the Rule 4. . 26
9 Rebeca code for the Light and Controller components when their connectors mapped 26
10 Traffic light Rebeca model . 28
11 Definitions in the Property file of Afra for Controller 29
12 Definitions in the Property file of Afra for Light . 29
13 Definitions in the Property file of Afra for Controller 30
14 Definitions in the Property file of Afra for Light . 30
15 Safety properties to be check in Rebeca . 30
16 Assertion of Controller . 32
17 FPTC rules of Controller . 36
18 FPTC rules of Door . 36
19 Generated safety contracts for Controller component 36
20 Door component safety contracts . 38
21 Start point of mapper first step . 38
22 Rebeca code of all blocks rule 2 . 38
23 System System block Rebeca code . 39
24 Ports mapped to Rebeca model . 39
25 Map connections to Rebeca model . 40
26 Train door Rebeca code . 42
27 Definitions in the Property file of Afra for Controller 44
28 Definitions in the Property file of Afra for Door . 44
29 Definitions in the Property file of Afra for Controller 44
30 Definitions in the Property file of Afra for Door . 45
31 Safety properties to be check in Rebeca . 45

v

Ermia Hassanpour Derive Safety Properties for Formal Verification

1 Introduction

Technology increases the risk of harm as it becomes more prevalent [2]. Safety is often characterized
as a system element that enables the system to function correctly [3]. In order to ensure the safety
of safety-critical systems, rigorous methods must be used to verify the safety criteria. Formal
verification can be used to ensure the system is safe based on robust mathematical methods. For
formal verification, models are created for a given system, and then these models are checked to
see if they satisfy the rigorous specifications of desired behaviour [4]. Formal verification helps to
prove certain properties of the model. This mathematical proof can strengthen the evidence for
the safety claims of the system. Hence, they can help in standardization and receiving certificates.

In order to apply formal verification, most specifically model checking, we need to model the
system, specify the properties, and then check if the system is safe. One of the most challenging
tasks in model checking is finding the set of required properties, including safety properties. In
order to obtain safety properties, it is possible to extract them from the system specification
documents. However, this may not be the most effective approach. Moreover, safety properties
for model checking are formulated in temporal logic [5] and it is not easy for safety experts to
specify properties in temporal logic. In this thesis, our goal is to create an approach to derive
safety properties for model checking from a systematic safety analysis technique. This is a more
effective and efficient method for identifying safety properties rather than relying solely on system
specifications. In addition, using this approach, the safety experts do not need to specify the
safety properties directly in temporal logic. They start from safety analysis using a model-driven
approach. Model-driven approaches are generally more usable for safety experts.

There are different model-checking tools with different modelling languages; also, different
methodologies and tools for safety analysis. We choose Afra [6] model checking tool, and Timed
Rebeca modelling language [7, 8, 9]. The reason for this is that Timed Rebeca is an actor-based
[10] language, suitable for modelling modern systems which are mostly networked asynchronous
system. For safety analysis, we selected ConcertoFLA [11] to conduct the analysis. ConcertoFLA
enables system architects and dependability engineers to customize component-based architectural
models (specified in CHESSML [12]) with dependability information, analyse failure logic, and
propagate the results back to the original model using Failure Logic Analysis (FLA) techniques
[13].

The ConcertoFLA technique not only helps in finding the interest set of properties, but also
helps engineers to create safety properties from ConcertoFLA results instead of trying to specify
them in temporal logic directly. In ConcertoFLA, users specify the behaviour of individual com-
ponents and possible failures, and then they can derive the possible failures at the system level.
ConcertoFLA uses Failure Propagation Transform Calculus (FPTC). We produce FPTC rules, and
from FPTC rules safety contracts are generated based on the method outlined in [14]. An integral
part of ConcertoFLA is the combination and automation of traditional safety analysis techniques
that provide a qualitative assessment of the dependability of component-based systems.

In this thesis, we show how to extract a set of safety properties from ConcertoFLA results.
However, these safety properties cannot be used for model checking without the model of the sys-
tem. Traditionally, similar to the safety properties, we create the model from system specifications.
In this thesis, we extract the model from CHESSML diagrams. When the industry uses CHESS
to run safety analyses, CHESSML diagrams are created. In CHESSML, Internal Block Diagrams
(IBDs) model the system’s structures. ConcertoFLA is applied on IBDs for failure transformation
and propagation analysis. In this thesis, we introduce a method to map Internal Block Diagrams
of CHESSML to Rebeca code. IBDs do not capture the behaviour of the system. The behavioural
models include sequence diagrams. We apply methods presented in [15] to map sequence diagrams
to Rebeca codes. The generated Rebeca codes are then used for model checking. We formally
verify the model against the safety properties derived from safety contracts to identify potential
hazards.

We apply our method to two case studies. We examine the first case study of a traffic light.
The traffic light contains two lights and a controller that controls the lights. It is important to
ensure that the light will not cause a traffic accident in order to ensure the safety of the traffic. The
second case study is about train doors. The train contains a door, passengers, and a controller.
An accident may occur if the door opens while the train is moving.

1

Ermia Hassanpour Derive Safety Properties for Formal Verification

In the thesis, we first introduce all the concepts necessary for understanding our approach.
After explaining all concepts, we present related work. Then, we introduce the research question
and describe how the problem is formulated, and the research is conducted. As a next step, we
propose a method to answer the research question, and apply our methodology on two case studies.
Finally, we present the conclusion and potential future work.

2 Background

An introduction to safety analysis approaches, notations, and formal verification approaches to be
used in the Rebeca modelling language and the Afra model checker is provided in this chapter.

2.1 Model-Driven Engineering

“Model-driven engineering technologies offer a promising approach to address the inability of third-
generation languages to alleviate the complexity of platforms and express domain concepts effec-
tively.” [16] Using models as fundamental artefacts in software engineering is known as model-
driven engineering (MDE). In software development, model-driven engineering encompasses a wide
range of model-driven techniques, including model-driven architecture, domain-specific modelling,
model-driven integration, and component-based modelling [17].

Using component-based approaches, it is possible to construct systems from pre-existing com-
ponents; component-based systems are designed to identify and develop reusable entities and their
relationships based on the requirements for the system and the availability of pre-existing com-
ponents as the starting point. A significant amount of implementation work will be eliminated
during system development; however, the effort required to manage the components will increase:
identifying them, choosing the most relevant ones, testing them, etc [18].

Safety Engineering Life-cycle: Safety engineering emphasizes the identification of failures that
can result in hazardous situations and the presentation of compelling arguments proving that the
system is safe. As part of the system engineering and assessment process, evidence was collected to
support this argumentation. The first phase of the safety engineering life cycle is item definition.
This phase outlines the item to be considered by the safety engineering process and the item’s
dependencies on its surroundings. Following a clear definition of the system, the Hazards and
Risks assessment is conducted [19].

Unified Modelling Language (UML) Modern safety-critical system have become increasingly
reliant on modelling. Modelling software systems has become standardized using the Unified Mod-
elling Language (UML) since the mid-1990s. There are many phases involved in the development
of software, including requirement phases, implementation phases, and maintenance phases. Mod-
elling in software development has been empirically proven to be effective, but empirical evidence
is scarce and limited. The UML is designed to provide a way for modelling applications across
a broad range of fields in software engineering. UML has been designed in order to incorporate
various existing modelling languages [20].

SysML “OMG Systems Modelling Language (OMG SysML) is the official name of the language
but it is referred as SysML.” [21] OMG SysML is a set of diagrams for specifying system require-
ments, behaviour, structure, and parametric connections. Block definition diagrams and internal
block diagrams depict the system’s structure. Figure 1, depicts the link between UML and OMG
SysML using a Venn diagram [22].

Internal Block Diagram “The internal block diagram describes the internal structure of a
system in terms of its parts, ports, and connectors.”[22] In SysML, the Internal Block Diagram
represents a block’s internal structure in terms of attributes and connections between attributes. A
block may have characteristics that define the block’s values, components, and references to other
blocks. Ports are a subclass of attributes used to indicate the sorts of interactions between blocks
that are permitted.

2

Ermia Hassanpour Derive Safety Properties for Formal Verification

SysMLUML

UML reused

SysML
Extention
to UML

SysML

Figure 1: UML/OMG SysML Relationships

2.1.1 CHESS

An open-source initiative developed to improve visibility, usability, and standardization, CHESS
is an open-source project that was developed with this goal in mind. It intends to improve model-
driven engineering practices and technologies by using the CHESS methodology and supporting
toolset (initially developed in the CHESS project) to ensure that components are developed and
incorporated correctly in embedded systems to address safety, reliability, performance, robustness,
and other non-functional concerns. CHESS is a project provides a selection of modelling tools for
safety-critical systems. Also, CHESS is an a methodological framework for Eclipse based on MDT
Papyrus. We can design, analyse, and model for essential systems using CHESS. CHESS study
does not evaluate any functional properties for dependability. All modelling in CHESS is separated
into viewpoints. These views will have distinctive nomenclature and constants [23, 24]. Figure 2
below gives a conceptual view about the CHESSML dependencies.

SysML

UML

UML reused

SysML
Extention
to UML

SysML

MARTE

CHESSML

Figure 2: CHESSML dependencies

These are some of the many viewpoints available inside the CHESS tool environment, each of
which is dedicated to a certain facet of the system under construction.

Requirement View. It is used to represent software requirements and link them to other
features of the model, such as the implementations of particular components. SysML Requirement
Diagrams are brought in to accompany the imported requirement view [23, 24].

Component View. It is a collection of perspectives that dissect the system into its component
elements from several viewpoints, including functional and non-functional views. Included are both
the functional and extra-functional aspects. In the functional viewpoint, state machines and other
standard UML diagrams are used to show functional activity, and the system is modelled using
a component-based design approach in which each component is supplied and needed interfaces
built through ports [23, 24].

Deployment View. Parallel to the construction of the software architecture, the CHESS
development process demands that the user model the target execution platform. The Deployment
view enables the modelling of the target execution platform and software component allocations
to hardware components [23, 24].

3

Ermia Hassanpour Derive Safety Properties for Formal Verification

Analysis View. It is a collection of views via which the user may model the analysis contexts
that will be utilized as input for many of the analysis tools provided. This perspective is divided
into two different sections, each devoted to a certain sort of analysis [23, 24].

Figure 3 illustrates many of the key distinguishing characteristics of the CHESS tool environ-
ment’s enforcement of separations of concerns.

Figure 3: A screenshot of the CHESS application IDE with its available features

CHESS-FLA As part of the CHESS toolbox, CHESSFLA provides safety engineers with the
opportunity to review high-level models for early based safety analysis. As a result, component-
based architectural models can be enriched with dependability information, thereby serving as a
foundation for Failure Logic Analysis (FLA) approaches, such as FPTC and FI4FA. A CHESSFLA
investigation can be conducted on both hardware and software architectures. An analysis tech-
nique called FPTC (Failure Propagation Transformation Calculus) is explored in this thesis that
allows for qualitative failure propagation analysis and transformation calculus analysis of systems
consisting of components [25].

ConcertoFLA A component-based architectural model (specified in CHESSML) can be deco-
rated with dependability related information by ConcertoFLA, which extends CHESSFLA, and
failure logic analysis (FLA) results can then be back propagated to the original model by the user
(system architects and dependability engineers). As the primary foundation for ConcertoFLA,
Failure Propagation Transform Logic (FPTC) is utilized. A compositional approach, such as
ConcertoFLA, is used to analyse the dependability of systems using established safety analysis
techniques that are integrated and automated. Using ConcertoFLA, users are able to compute
system-level behaviour based on the definition of the behaviour of each individual component.
Four types of components can be used in ConcertoFLA: source of failure, which generates a failure
due to a fault within the component; sink of failure, which prevents the external fault from propa-
gating through fault tolerance; propagator of failure; and transformer of failure. ConcertoFLA rules
are logical expressions that describe the input/output connection and determine the component’s
behaviour [11].

4

Ermia Hassanpour Derive Safety Properties for Formal Verification

2.1.2 Failure Propagation and Transformation Calculus (FPTC)

As a result of the FPTC method, a system’s failure behaviour is automatically deduced from the
failure behaviours of its constituent components. A system’s performance must be improved by
understanding how it behaves during a failure [26].

Failure Behaviour of a single component Each component of the system must be analysed
separately using the FPTC methodology. In order to determine whether a component is prone to
failure, it must be analysed how it responds to potential failure stimuli. As a result of receiving
input, a component will respond as follows:

• Sink:It implies that the component is capable of detecting and correcting failures that are
produced elsewhere in the system

• Source: Components behave as sources when they generate failures on their own without
receiving any failures as inputs.

• Propagation: A component receives a failure input and the type of failure on the output
remains the same.

• Transformation: Transformation behaviour means that a component changes the nature
of failure from one type to another [27].

Types of failure A system’s failure modes provide an overview of the possible failure scenar-
ios a system may face, and these scenarios can take four different perspectives. There are four
perspectives from which failure modes can be viewed. These perspectives are: domains, consis-
tency, detect ability, and environmental impacts. FPTC complies with the failure types defined
by HAZOP/SHARD. Through a set of guide words, they identified types of failure [28].

• Value failure: Value failure means that the value of the result provided by a component is
deviated from the expected range; value Subtle and value Coarse are subtypes of type value
failure.

– Value Subtle User cannot detect the deviation from expected values because the output
falls outside the expected range of values.

– Value Coarse This deviation can be detected by the user by noticing MORE/LESS in
the output values.

• Timing failure: Timing failures refer to failures that occur outside the requested delivery
window. Timing failure is divided into two subtypes named as early and late failure.

– Late Components that provide results beyond the expected time-frame are considered
late.

– Early Components that provide results before their expected time frame are considered
early.

• Sequence / Provision failure: This type of failure mode represents an assertion that
a component delivered a sequence of failures that could be infinite, as well as having a
relationship with the timing pattern. In sequence failures, there are two subtypes, namely,
omissions and commissions.

– OmissionDescribes a situation in which a component generates a result that is infinitely
late (time interval) in comparison to what is expected.

– Commission Supplying when it is not necessary

SyntaxExpressions are composed of two parts: the left-hand side (LHS) and the right-hand side
(RHS). These expressions contain propagation and transformation instructions. FPTC syntax
(Figure 4) enables users to specify component behaviours. A component’s input behaviour is
indicated on the left-hand side of the expression, and its output behaviour is indicated on the
right-hand side of the expression [27]. As a means of reducing specification burden, wildcards

5

Ermia Hassanpour Derive Safety Properties for Formal Verification

Figure 4: FPTC syntax supported in CHESS-FLA

and variables are used in FPTC. By using wildcards in an expression, the user does not need
to care about failure types in specific positions or input behaviours that can play a decisive role
in generating output behaviour. Input tokens that are matched by wildcards are denoted by
“-” Variables should appear on the right-hand side of an expression in order to propagate them.
Wildcards are denoted by “*”. FPTC defines the following four possible behaviours of a component
as a variable: normally, variables cannot be failure types, and any values other than failure types
are treated as variables [27].

Benefits of FPTC There are several benefits associated with the FTPC technique, including:

• FPTC is a qualitative analysis technique.

• In contrast to computing the failure behaviour of an entire system, analysing the failure
behaviour of a single component (or component from bottom to top) is more straightforward.

• In the event that failure behaviour is calculated from the building blocks of the system, it is
much easier to determine the impact of change of one component on the entire system and
hence the process of improving it will be more cost-effective.

2.1.3 Safety Contracts

Assumptions A are made about the surroundings of a component, and assurances G are provided
in exchange for those assumptions being met; this is a contract based on historical assumptions
and guarantees. The semantics of contracts are determined by their implementation contexts. As
long as an environment satisfies all the assumptions A of a contract,

C = {A,G}

it is considered to have fulfilled the contract. The contract is satisfied by implementations that
fulfil both the assumption A and the guarantee G [27].

2.2 Formal Verification

In software and hardware systems, mathematical methodologies are used to define and verify their
properties, often using computer-based tools to facilitate the process. Formal verification consists
of developing mathematical models for a given system, and verifying that these models adhere to
rigorous specifications of desired behavior [4].

6

Ermia Hassanpour Derive Safety Properties for Formal Verification

Reactive Objects Language (Rebeca) Rebeca is a modeling language based on actors [7, 8, 9].
In concurrent computing, actors are commonly used as the universal primitives. It is a non-blocking
asynchronous call to a message server associated with the actor that is used to communicate with
the actor by way of message passing. Actors in Rebeca are self-contained units of concurrent
executing programs. In Rebeca’s Java-like syntax, actors are defined by reactive class definitions,
which are analogous to Java’s concept of classes. A message server is an actor method that defines
the actor’s response to a message. It is typically sufficient to inform them that each actor is a
separate thread of operation and that message servers operate atomically and without preemption.
Rebeca is being improved in a number of ways to ensure that it is suitable for use in various areas
and analysis methods. A time-critical system can be modelled and verified using Timed Rebeca
since it incorporates time-related properties [29].

The Rebeca model combines some concepts from actor-based modeling with some concepts
from object-based modeling, thereby implying that Rebeca is utilized for designing distributed
object-based systems that can be formally verified using a model checking tool. To make selected
system model more appropriate for model checking, Rebeca uses abstraction techniques to the
state space of the model.

The Structure of a Rebeca Model is briefly presented in thesis [15]:

1. Definition of reactive class

(a) Generic: reactiveclass ClassName(queue size) {class body}
(b) Example: reactiveclass Test(2) {...}
(c) Rule: Class name should start with a capital letter.

2. Definition of constructor

(a) Generic (without arguments): ClassName() {constructor body}
(b) Generic (with arguments): ClassName(ExtType argument,...) {constructor body}
(c) Example (without arguments): Test() { self.move(); testVar = true; }
(d) Example (with arguments): Test(boolean value) { testVar = value; self.move(); }
(e) Rule: Constructor is not preceded by any keyword other than the name of the class

and it is used for initializing state variables and calling appropriate message servers.
Notably, it is the first message that is executed by each Rebeca.

3. Definition of known rebecs or known reactive objects

(a) Generic: knownrebecs {specification of known rebecs}
(b) Example: knownrebecs { Test knowntest; }
(c) Rule: Each known rebec is defined by a class name followed by the name of the object

that is instantiated.

4. Definition of state variables

(a) Generic: statevars {specification of state variables}
(b) Example: statevars { boolean testVar; }
(c) Rule: Each state variable is defined by a type (Type excluding ExtType) followed by

the name of the variable.

5. Definition of message servers

(a) Generic (without arguments): msgsrv MessageServerName() message server body

(b) Generic (with arguments): msgsrv MessageServerName(ExtType argu- ment,...) mes-
sage server body

(c) Example (without arguments): msgsrv move() ...

(d) Example (with arguments): msgsrv move(int value) ...

7

Ermia Hassanpour Derive Safety Properties for Formal Verification

(e) Rule: Message servers accept ExtType for its arguments and, in compare with local
methods, message servers can be accessed from other reactive classes as well.

6. Definition of local methods

(a) Generic (without arguments): MethodName() {local method body}
(b) Generic (with arguments): MethodName(ExtType argument,...) {local method body}
(c) Example (without arguments): test() {...}
(d) Example (with arguments): test(int numberOfUnits) {...}
(e) Rule: Local methods accept ExtType for its arguments and in compare with message

servers, local methods can not be accessed from other re- active classes. Local methods
can be void and return methods.

7. Definition of main

(a) Generic: main {main body}
(b) Example: main Test test(otherTest):(); OtherTest optherTest(test):();

(c) Rule: After the reactive classes are defined, they use main for instantiating reactive
classes and passing required arguments and known rebecs which enables the execution.

[15]

The Model Checking Tool Afra Rebeca and Timed Rebeca models can be modelled and
checked using Afra, a tool suite. Afra is a model checking integrated development environment
(IDE) that facilitates the modeling and testing of Rebeca and Timed Rebeca models. Initially,
it is intended to be a standalone Eclipse application. Afra provides a suite of Eclipse views and
editors along with Java components for the construction and analysis of models, which is similar
to many other Eclipse plugins [29].

2.3 CHESSML to Rebeca

When all the considered Rebeca concepts have been identified and documented they can proceed by
providing a corresponding CHESSML concepts that can be used as mapping pairs in the process
of creation of the mapping procedure. This process is iterative as they iterate both through
CHESSML and identified Rebeca concepts and perform detection of mapping pairs.

Mapping Sequence Diagram to Rebeca Code A sequence diagram represents methods
(message servers, local methods, or constructors) defined as part of the local method or message
server. In addition to defining sequences of messages exchanged via message servers and local
methods, it also allows us to define internal circular messages. The left-hand side of the diagram
displays a source lifeline containing only the class name, while the right-hand side displays the
object name and its corresponding class name. The sequence diagrams model a single method
(attributed to class-level logic), which can be invoked from objects within other classes defined
within them (which is typical for Rebeca and definitions of known Rebecas). The following notation
represents the expected modeling notation in this thesis, and these semantic additions will be
incorporated into the conversion validation. Sequence diagram and its semantics include in the
thesis [15].

8

Ermia Hassanpour Derive Safety Properties for Formal Verification

3 Related Work

In this thesis, one of the main objectives is to identify the hazards and risks in an early stage of
the development of a system.

In previous works, Sirjani et al. [30] tried to close the remaining gap between high-level needs
and the actor model; they used a structuring strategy based on the GIVEN-WHEN-THEN syntax
to remove ambiguity and smooth the transfer from requirements to the formal model [30].

According to Gallina et al. [31] it has become common to make multi-concern statements about,
for instance, safety and security, and how these issues interact in safety-critical domains such as
automotive, rail, and aviation, and to justify these statements with evidence. The validity of
such claims is largely explained utilizing process-and-product-related types of evidence. It may be
necessary to combine mono-concern and multi-concern analysis results at the level of system design,
along with a justification of whether the chosen analysis techniques are compliant with relevant
standards. Also, they said engineers can use FLA as a tool to add dependability-related behavioural
specifications to component-based system specifications. Through FLA, traditional safety analysis
techniques (FTA and failure mode and effects analysis) are combined and automated, resulting in
a calculation of failure behaviour at the system level based on failure behaviour at the component
level.

According to Sljivo et al. [32], a variety of contexts restricts the reuse of accompanying safety
artefacts. Their method involves generating reusable arguments-fragments related to compositional
safety analysis that include supporting evidence. The generation process takes place based on safety
contracts that represent the behaviour of components in assumption/guarantee pairs, accompanied
by supporting evidence. In relation to our work, the authors attempted to apply failure logic
analysis results to safety case fragments and artefacts. In the FLAR part, they attempted to model
the component architecture in CHESS-FLA, then specify the failure behaviour of a component
isolated using FPTC rules; translate the FPTC rules into corresponding safety contracts. The
next step was to formally verify the safety of contracts so that they could be used as evidence.
He verified safety contracts by OCRA tools. A component-based system specific with a temporal
logic is supported by OCRA for the first time, which allows the verification of refined contracts.
In conjunction with the SafeCer project, OCRA was developed as a component-based certification
tool that is currently being used by industrial partners. The tool is also integrated with a UML-
based modelling environment for aerospace systems [33]. We used the Afra model checker instead
of OCRA for our formal verification.

According to Fatemeh et al. [34] introduced a new tool that facilitates the modelling and
verification of distributed systems composed of reactive objects communicating using asynchronous
messages. The tool includes all features of our previous studies and introduces new features
specific to the development process. By using Rebeca tools and theory, this approach allows
users to develop their software systems using UML while still benefiting from formal verification
support. The addition of verification to the software development lifecycle combines two separate
approaches to modelling. However, they introduced new tools which do not include any safety
analysis, which does not convince industries to use them. Also, these approaches did not help with
the main problem we noted, which is the property part. As part of this study, extensive conceptual
mappings are provided for all of Rebeca’s structural and behavioural ideas on a syntactic level, for
which short semantical mappings are provided for structural concepts, and incomplete behavioural
concepts are included without a description of their mappings.

According to Djukanovic et al. [15] a UML profile did not create for this work as they wish to
maintain the UML in its original form. Further, they need to specify certain rules that will be used
to verify the correctness of source UML models before they are converted to Rebeca, as well as
ensuring compliance with the mapping technique. As a result of the combination of these principles,
a modelling pattern appears to be recommended for the UML diagrams being considered. They
also consider both structural and behavioural diagrams of UML models, namely the Class diagrams
and Object diagrams for structural diagrams and Sequence diagrams and State-machine diagrams
for behavioural diagrams. They emphasize primarily three of the UML diagrams listed (a class
diagram, an object diagram, and a behavioural diagram) in an effort to maximize the available
information and reduce the number of diagrams. In this thesis, they did not use an internal block
diagram, which is one of the essential diagrams needed for safety analysis, but their approach can

9

Ermia Hassanpour Derive Safety Properties for Formal Verification

be used to complete part of our Rebeca models.
To summarize related work, there are studies that have been done over safety analyses by

ConcertoFLA technique. Additionally, those studies attempted to formally verify techniques, first
of all, there is no bridge between CHESS and Afra. Also, we could not find any work about
extracting safety properties.

4 Problem Formulation

Model-Driven Development (MDD) is a software development methodology that stresses abstrac-
tion to manage system complexity. This technique allows for analysis to occur early in the develop-
ment phase [30]. MDD applies UML profiling and separation of concerns by specifying well-defined
design views that address specific aspects of the problem. The system can then be described in
terms of its non-functional, functional, and deployment aspects in a focused manner, thereby
avoiding interference between issues pertaining to various domains of the system [35].

The use of MDD in safety-critical systems requires (semi-)formal methods of designing and
simulating the system at various stages of development. Using modelling language standards such
as UML has become widespread among engineers in various fields. The essential step to verify the
modelled system in UML is to verify them throw safety requirements. Identifying and verifying
safety requirements in safety-critical systems requires stringent solutions. Therefore, we need a
modelling framework that supports formal verification. It is possible to check models in different
languages using a variety of model-checking tools. In order to conduct formal verification of the
system, the Rebeca modelling language was chosen. In order to build a model that is faithful to
the system to be modelled, Rebeca models are constructed based on the safety requirements as
well as the system architecture. The model is also used to generate executable code for the system
as a result [30]. An industry safety document which is designed for the particular system is used
to describe all safety requirements that have to be addressed.

Various types of documents are supplied by industries. Among the most essential are safety
documents. Businesses may use safety documents to guarantee that their designs adhere to safety
regulations. These documents include the design of the safety component of a system. This safety
layer aims to resolve problems and identify methods for making the system safer. They strive to
create evidence to guarantee the safety of their systems. Explanations and evidence are supported
by lucid reasoning and rational arguments. According to Šljivo et al., the standard safety method
starts with hazard identification. This identification may be achieved by analysing the system’s
operation and response to failures. After identifying potentially hazardous components, they may
seek to build safety contracts to assure the safe construction of their system [14]. ConcertoFLA is
a qualitative failure logic analysis. This technique attempts to analyse each component separately
by calculating its failure propagation and transformation (FPTC). The end of FPTC rules may
assist us comprehend each component’s failure-related behaviour.

A model of the safety-critical system is created and uses model checkers to ensure that the
approach is accurate. If the modelled system can be formally verified, its safety requirements
will be backed by substantial evidence. For formal verification, we use Rebeca, an actor-based
modelling language, and its model-checking tool, Afra. As a first step, the specified system should
be modelled using the Rebeca modelling language. Afra tools will use the modelled system to
check the safety properties that are also provided to Afra as part of the verification process. It
will formally verify that all safety requirements have been examined and satisfied. Locating these
properties is one of the primary concerns in this thesis.

4.1 Research Goal and Question

As a result, the key research question is presented below:

RQ : How to derive safety properties from qualitative failure logic analysis (FLA) results and use
them for formal verification? More specifically, how to derive safety properties from safety
contracts and use them as properties for model checking Rebeca models? 1

1Note: Safety contract are derived from FPTC rules (Failure Propagation and Transformation Calculus), and

10

Ermia Hassanpour Derive Safety Properties for Formal Verification

There are two failure logic analyses, qualitative and quantitative. As part of its qualitative
failure logic analysis (FLA), ConcertoFLA employs the Failure Propagation and Transformation
Calculus (FPTC) formalism while utilizing the State-based Analysis (SBA). Engineers may enhance
component-based system specifications with dependability-related behavioural specifications, per-
form the analysis, and incorporate the analysis results into the original system specifications in
both cases. In FLA, local component failure propagation channels are defined in accordance with
FPTC rules to specify qualitative dependency-related behaviour. As a result of component failures
and injected behaviour, FLA automates safety analysis (Fault tree analysis and failure mode and
effects analysis) and calculates qualitative system failure.

In this thesis, using the method presented in [14], we aim to extract safety properties. In order
to create safety contracts, they used the results of a ConcertoFLA technique based on the fail-
ure propagation and transformation calculus (FPTC). Secondly, the use of ConcertoFLA findings
throughout the model verification process will assist in the identification of safety properties that
are used in model checking. For answering the second question, we investigate how safety analysis
(ConcertoFLA technique) helps in improving the process of specifying temporal logic properties
used in model checking, and how it helps in building a more complete set of properties.

Also, one of the outcomes of this thesis is a mapping from the internal block diagram to the
Rebeca code. This will enable us to have a bridge from CHESS to Afra tools.

4.2 Limitations

The following section aims to provide a summary of the limitations of this dissertation over a broad
range of topics:

• One of the most significant constraints in the project is that we need the safety documents
of a company to perform the analysis. It is important to note that without these documents,
we would not be able to apply our method.

• Another limitation is that the properties derived using this analysis are not necessarily the
most interesting safety properties of the system that we are looking for in model checking,
properties that show different relations of components in a system.

4.3 System development research methodology

According to Nunamaker and Chen [1], system development research methodologies are multi-
dimensional and multi-methodological approaches that can be applied to engineering and technical
science research. System development research involves the development of systems, experimenta-
tion, observation and performance testing as part of the overall research contribution. The system
development research method follows the theory of system development and other complementary
methods. In addition to investigate the different facets of the research questions, these meth-
ods have the additional benefit of making them applicable in areas where it may be difficult to
formulate research questions and determine the direction of a project in the early stages.

As part of the systems development research methodology, four phases are involved in the
actual development of the system which are shown in Figure 5. In the iterative nature of the
chosen research methodology, each phase might be conducted more than once with the knowledge
and information gained from previously conducted iterations. Based on the scientific contribution
contained in this thesis, the following steps are considered:

Construct a Conceptual Method. During this phase, the research question and the scientific
purpose of the thesis is defined. Also, the system’s requirements are investigated and the method-
building process is clarified.

FPTC rules are derived from the system specification using ConcertoFLA, based on the approach presented in [14],
[32].

11

Ermia Hassanpour Derive Safety Properties for Formal Verification

Analyse and Design the Solution. The purpose of this phase is defining a method to derive
safety properties. In addition, to meet the objective of this thesis, we considered reviewing the
relevant studies in order to develop approaches and ideas for proposing solutions. This phase
begins with the specification of the system.

Case Studies. This thesis runs the design method (discussed in the previous phase) over two
case studies. Case studies typically are the most suitable methodological approaches to conducting
an intensive study of selected examples.

Observe and Evaluate System. Performance evaluation is carried out in this phase by includ-
ing a proof of concept assessment and an evaluation of performance.

2. Analyse and
Design the

Solution

3. Case
Studies

4. Observe
and Evaluate

System

1. Construct a
Conceptual

Method

Figure 5: System development research process [1]

12

Ermia Hassanpour Derive Safety Properties for Formal Verification

5 Methods to Solve the Problem

This chapter presents methods to solve the problem explained in Section 4, Sections 5.2 presents the
mapping rules for transforming IBD to Rebeca code . Sections 5.2, 5.4 addresses the integration-
related characteristics of FPTC and Rebeca code. Figure 6 depicts the steps we followed to answer
our the research question. In this methodology, The first step (given in gray background) is inspired
by the introduced method in [27]. We use the results of the first three steps in the next steps to
answer our research question.

Rationale Safety-critical systems that are developed using a model-driven approach will attempt
to model their specifications. There are two types of modelling tools: formal and informal. We use
CHESS, a modelling tool that allows us to perform failure logic analysis, as one of the informal
tools. On the formal side, Afra Tools is a formal verification tool that requires a system model
in Rebeca modelling language along with properties to verify the model. A significant challenge
in the formal verification tools of Afra was how to derive properties when using them for formal
verification. One way to determine Afra’s safety properties is to connect CHESS and Afra. By
utilizing the method described in the thesis [14], we extracted safety contracts from ConcertoFLA
results, one of the CHESS tools for safety analyses.

In order to create a safety contract, we first need to perform the steps proposed in [14]. The
safety contracts typically specify that each component may fail in a certain situation. Using the
failure information, we determine safety properties that can be used in the model checking step. A
safety property is a model for verifying the system in the formal verification language of Rebeca.

RQ

CHESSML
Diagrams

Safety
Contracts

3.1. Mapping
CHESSML Models
to Rebeca Model

3.2. Mapping the
Safety Contracts

to Rebeca
Properties

System
Model in
Rebeca

Lanaguge

Safety
Properties

in Afra

4. Model Checking
via Afra Tool

2. Conduct the Safety Analysis
with the ConcertoFLA Technique

and

Translate the FPTC Rules Into
Corresponding Safety Contracts

1. Create CHESSML Diagrams from
System Specification

Figure 6: An overview of our approach.

5.1 Create CHESSML Diagrams from System Specification

The minimum CHESSML diagrams necessary for establishing a detailed enough mapping procedure
that ensures a meaningful Rebeca information, include Class diagram and Object diagram as
structural diagrams and Sequence diagram as behavioural [15]. As part of this step, we create
the minimum number of diagrams necessary to model the system. Diagrams are constructed to
represent both the behaviour and the structure of the diagram. The thesis we try to use Sequence
diagram to model the behaviour of the system. Also, we try to create a mapping between Internal
Block Diagrams and Rebeca code to model the structure of the system.

5.2 Conduct the Safety Analysis with ConcertoFLA Technique

In this step, we tried to reproduce the steps done in the thesis. We try to define all system
specifications in the CHESS tools. Then, for each component created in the internal block diagram,
we write FPTC rules for all of its ports. These FPTC rules are the results of ConcertoFLA analysis.

Translate the FPTC Rules into Corresponding Safety Contracts In this step, we trans-
late the FPTC rules to safety contracts with help of two rules (Rule 1 and Rule 2) introduced in
[36]. The rules and an example for each rule are listed as follows:

13

Ermia Hassanpour Derive Safety Properties for Formal Verification

• Rule 1 : For each input, identify the different failures and assign them as assumptions
connected by the AND (&&) operator. Figure 7 shows an example of rule 1 when we have a
component with three inputs and two outputs. Two of the three inputs are defective with a
failure. After mapping them to assumptions, there are two inputs that have a failure in the
FPTC rule.

FPTC rules Safety contracts

Inputs: Each FPTC rule contains all inputs, some inputs may
have NoFailure, while others may have a type A failure.

ComponentInputAPort.noFailure ,
ComponentInputBPort.FailureType ,
ComponentInputCPort.FailureType
->
ComponentOutputAPort.FailureType ,
ComponentOutputBPort. noFailure ;

For each input, identify the different failures and assign
them as assumptions connected by the AND operator.

A: not (ComponentInputBPort.FailureType &&
ComponentInputCPort.FailureType)

Figure 7: An example of Rule 1

• Rule 2 : For each output, identify the different failures and assign them as guarantee con-
nected by the AND (&&) operator. Figure 8 shows an example of rule 2 when we have
a component with three inputs and two outputs. Two of the three output are defective
with a failure. After mapping them to guarantee, there are two outputs translated to safety
contract.

FPTC rules Safety contracts

Outputs: Each FPTC rule contains all outputs, some outputs
may have NoFailure, while others may have a type A failure.

ComponentInputAPort.noFailure ,
ComponentInputBPort.FailureType ,
->
ComponentOutputAPort. noFailure ,
ComponentOutputBPort. FailureType ,
ComponentOutputCPort.FailureType ;

For each output, identify the different failures and
assign them as guarantee connected by the AND
operator.

G: not (ComponentOutputBPort.FailureType &&
ComponentOutputCPort.FailureType)

Figure 8: An example of Rule 2

5.3 Mapping Internal Block Diagram to Rebeca Code

In this section, we describe how we map internal block diagrams to Rebeca codes. This is presented
as arrow 2.1 in Figure 6. Each internal block diagram is divided to three primary sections: blocks,
ports, and connections. Ports are assigned to blocks, and connections are established between
blocks via the use of ports. Blocks are classified into two types: system blocks and regular blocks.
System blocks are the primary constituents of each internal block diagrams. Multiple system
blocks can be incorporated into a single system block. The following list shows our rules to map
an internal block diagram to a Rebeca code model:

1. Rule 1: This rule is for mapping the main internal diagram to Rebeca. To achieve this, we
add main{} into the Rebeca code to map a primary internal block diagram to the Rebeca
code. In Rebeca, main shows the entry point for defining reactive classes. As it is shown in

14

Ermia Hassanpour Derive Safety Properties for Formal Verification

Figure 9, since we have an internal block diagram for the whole system; therefore we create
a main in Rebeca code to use it to instantiate new the components.

Figure 9: Mapping system Internal Block Diagram to Rebeca

2. Rule 2: Each internal block diagrams block corresponds to a reactive class in Rebeca. The
name of the reactive class is mapped to the name of the block in internal block diagrams. After
generating a reactive class in Rebeca code, we also need to create an instance of the reactive
class in the main{}. Each component inside the system may have its own block diagram.
There is an internal block diagram hierarchy that starts with the system’s internal block
diagrams and extends to each component; If that component contains more components, we
need to create an internal block diagram for them too. Recursively, internal block diagrams
must be created until there is no component left without a diagram. Figure 10 shows an
example of Mapper rule 2. It shows when we have a block, Test, in CHESS and after applying
the Mapper Rule 2 we have a reactiveclass Test(){}, and an instance of this reactive class
in the main{} code.

Figure 10: Mapping a block to Rebeca

3. Rule 3: After applying the Mapper Rule 2, we need to map each system block in CHESS
to reactive class constructor, as well as adding the Msgsrvs. Figure 11 shows an example
of Mapper Rule 3. It shows when we have a block, Test, in CHESS and after applying the
Mapper Rule 3 we have a constructor, Test(){}, and a Msgsrvs, msgsrv testMsgsrv(){} , in
the reactiveclass code.

4. Rule 4: This rule is for mapping the block’s ports. When we have a port, then we add
Statevar in the Rebeca code, while the types of variables in Statevar are as the same as the

15

Ermia Hassanpour Derive Safety Properties for Formal Verification

Figure 11: Mapping a system block to Reactiveclass

types of the ports in the block. Figure 12 presents an example of mapping port in Rebeca
code.

Internal Block Diagram in CHESS Rebeca Modeling Language

Ports

Ports are points at which external entities can
connect to and interact with a block.

CHESS has Input, InOut, and Output port types.

Map to Statevars

Each state variable is defined by the name of the
variable.

Port name map to the state variable name,
port type map to the state variable type.

Flowport testInt <Int>

Flowport testBoolean <Boolean>

Flowport testBoolean <Boolean>

Figure 12: Map Ports to Statevars

5. Rule 5: The previous Mapper Rules show how we map IBD connections to message servers
(Msgsrv) in Rebeca. All connections have a source block which starts from that block
and a destination block which ends on that block. For each connection, a message server
(Msgsrv) is produced and added to Rebeca for both the source and destination blocks. The
transmitting value on the output port of the mapped-to-Statevar block will be transmitted as
an argument to the destination message server in the source block message server. Moreover,
the Reactiveclass of the destination block contains the Knownrebecs of the source block. We
add an instance of the Reactiveclass to the Knownrebecs of the source block.

Figure 13 shows an example of Mapper rule 5. When we have 2 blocks, BlockA and BlockB,
which are linked with their ports. So we map it to a message server (msgsrv) in reactiveclass.
Figure 13 shows an example of Mapper Rule 5 when we have two blocks (BlockA and BlockB)
with a connection between these two blocks. We call the message server (BMsgSRV())
of BlockB by adding b.BMsgSrv(); in a message server(test()), of BlockA to map the
connection between these to block.

6. Rule 6: When a connector is connected to the InOut port (the source port is the same as

16

Ermia Hassanpour Derive Safety Properties for Formal Verification

Internal Block Diagram in CHESS Rebeca Modeling Language

Connectors

A port of Block A is connected to a port of
Block B by a connection.

Each connector has a source block and a
destination block.

Block A is the source and Block B is the
destination.

Map to Msgsrv

Msgsrvs are added to both Reactiveclasses that are
mapped to the source and destination blocks.
There are input parameters for both Msgsrvs that have
the same type of port of connection on the block.
The Reactiveclass assigned to the source block has a reactive
class of destination block as Knownrebecs.

testInt testInt

˜

Figure 13: Map Connections to Rebeca code

the destination port) and has the same source block and destination, the connector will map
according to this rule. This connection will map to a Msgsrv, which will call itself within its
body.

As an example, Figure 14 shows a component with one port. The connector selfCall will map
to the Msgsrv selfCall, and the self.selfCall will be added to its body as well.

Internal Block Diagram in CHESS Rebeca Modeling Language

Self connectors

A self connector is a connection to the InOut port
(the source port is as same as the destination port)
and has the same source block and destination.

Map to Msgsrv

This connection map to a Msgsrv, which calls
itself within its body.

BlockA
selfCall

Figure 14: Map Self connections to Rebeca code

5.4 Mapping the Safety Contracts to Rebeca Properties

The FPTC rules are mapped into safety contracts. The safety contracts have two elements: as-
sumptions and guarantees. Assumptions are conditional statements over input ports (p statement)
and guarantees are conditional statements over output ports (q statement). Here is what a safety
contract looks like: Assumption : not(p)

Guarantee : not(q)

A safety contract implicates that if the assumptions on the inputs of the component do not

17

Ermia Hassanpour Derive Safety Properties for Formal Verification

hold, then the guarantees on the outputs of the component will not hold. A safety contract can
be present as an implication:

not(p) → not(q)

We present this implication as an assertion in the property file in Afra. We write the implication
as a disjunction:

¬p → ¬q ≡ ¬(¬p)|(¬q)

The above disjunction is mapped to an assertion in Afra as:

¬ (¬p & q)

Each port may have a different type of failure. In the Rebeca model, the failure of a port is
captured as specific values of certain variables. In step 4 of mapping the internal block diagram
to the Rebeca model, we mapped each port to a Statevar (variables) of Rebeca. Mapped Statevar
has the same type as the Port type. The Statevar value will check in a conditional statement.
The created statement will add to a variable in the definition part Afra. The statement shows
a port value and compares it with the expected value when it failed. After all ports of safety
contract added to definition part of Afra. We can create the assertion. We used a logical approach
to map ”safety contracts” to assertions. ”Safety contracts” can be mapped to ”assertions” in a
straightforward way. An assertion contains two parts; assertions and guarantees defined variables.
For each assertion, in the last step, we defined a variable. The defined variable is negated and
added to the assertion and logically and (&&) to what was previously added. Also, in the last step,
we defined a variable for each guarantee. The defined variable will add to the assertion logically,
and (&&) to what was added previously.

A safety contract for ComponentA would be: Assumption : not(InputA.comission)

Guarantee : not(OutputA.valueCourse)

The assumption part of safety contact is not(InputA.comission), this assumption is added to the
definition part of the Afra as follows:

de f i n e {
inputAValue = ComponentA . InputA ;

}

The guarantee part of safety contact is not(outputName.comission), this assumption is added
to the definition part of the Afra as follows:

de f i n e {
OutputAValue = ComponentA . OutputA ;

}

The assertion of this safety contract is:

de f i n e {
inputAValue = ComponentA . InputA ;
OutputAValue = ComponentA . OutputA ;

}

Asse r t i on {
Asser t i on1 : ! (! inputAValue && OutputAValue)

}

Figure 15 shows an example of safety contract mapped to properties in Afra.

18

Ermia Hassanpour Derive Safety Properties for Formal Verification

Safety Contracts Properties in Afra

Every safety contract has two parts: assumptions and
guarantees. Assumptions are statements that are made
based on the input ports. guarantees are statements that
are made based on the output ports.

A: not (ComponentInputPortName.FailureType)
G: not (ComponentOutputPortName.FailureType)

The safety contracts are turned into assertions and moved
to the property file in Afra. The file has two parts: the
definitions and the assertions. The clauses are written
based on the value of a variable for that actor. These
clauses are used in assertion part.

Figure 15: Mapping safety contracts to Afra properties example

5.5 Model Checking via Afra tool

In this step, we should try the assertions to ensure that the system will not fail, and we can ensure
that some of the combinations of the assertions defined in the model are not true. As a result
of the mapping, we generate a Rebeca code that represents the system. We must complete the
logic of some Msgsrv before we start the model-checking process. The behaviour of the system is
extracted from the documents. There are some gaps in the logic used in some Msgsrvs. Before
beginning the verification process, we add the Msgsrv missing logic from the documents to be
able to perform model checking.

After completing the model, Afro Tools tries to verify the model by finding a counter-example
on one of its assertions that gets true. This counter-example tells us that this model cannot satisfy
its properties. It is essential to remember that Rebeca does not fail the assertions unless it finds
a state where an assertion is true. If none of the assertions become true, the model satisfies the
properties. At the end of this step, we generate a model that satisfies all the properties, or we find
assertions failed in this model.

19

Ermia Hassanpour Derive Safety Properties for Formal Verification

6 Traffic Light Case Study

Traffic lights, traffic signals, or stop lights are signalling devices used to manage traffic flow at road
junctions, pedestrian crossings, and other sites. Typically, traffic lights consist of three signals that
convey information to cars and cyclists through colours and symbols, including arrows and bicycles.
Red, yellow, and green are the standard traffic signal colours, set vertically or horizontally in that
sequence. We performed all methodological procedures, as shown in Figure 6, for the traffic light
case study.

System description Traffic lights are designed to manage traffic flow and make driving safer.
Always approach the drivers slowly enough that the signal does not change before the drivers
reach the intersection. The colour of the traffic light in front of drivers as they approach a junction
dictates their course of action.

This case study consists of two traffic lights (LightA, LightB) and it is equipped with a
controller that is responsible for adjusting traffic lights as needed. Each traffic signal operates in
three unique modes: Red, Yellow, and Green. These statuses will not occur simultaneously at
a single traffic signal. Traffic lights will alternate between red and green, green and yellow, and
yellow and red (Figure 16).

Figure 16: Traffic Lights states

The crossing system is consisted of two traffic lights that should not be in the following states
concurrently and if they get the following values, an accident will occur at crossings:

• Green, Green: If both lights turn green, both vehicles on those routes will be able to
proceed through the crossing, resulting in a collision.

• Yellow, Yellow: If both lights turn yellow, vehicles on both routes may pass cautiously, yet
an accident will still occur.

• Red, Red: If both traffic lights turn red, all vehicles on both routes have to stop; thus, this
status is undesirable since it would result in a deadlock. Here, the crossing is in a deadlock
state, meaning no vehicle can move through.

These are the following safety-critical states of this system. If the lights get the colour in this
list, it causes a hazard or harm.

• Green, Green

• Yellow, Yellow

• Green, Yellow

After 10 unit of time it will send the startTrafficSignal. This signal is responsible for starting
running traffic lights, which includes changing lights by sending goToNext signals. Each light
supposed be active for 5 unit of time.

20

Ermia Hassanpour Derive Safety Properties for Formal Verification

Controller A signal will be transmitted to the controller as a start signal from outside the
system. When the controller receives the start signal, it sets the starting settings; this controller
works with two traffic lights. The system also includes a StartTraffic signal as an input. This signal
initiates the light sequence. When the StartTraffic signal engaged, the controller may deliver the
following signal. The controller call go to next signal every five time cycles.

• Inputs:

– startSignal: Is considered for initiating the system at initial state.

– startTrafficSignal: Is considered for changing the lights’ cycle.

– changeSignal: The controller starts to send GoToNext signals (goToNextA and go-
ToNextB) every 5 units of time when this signal become active. This signal causes the
lights to change every 5 units of time.

• Outputs:

– goToNextA, goToNextB: These signals can change the sequence of lights’ function.

– initValueA, initValueB: These outputs set initial value of lights A and B.

– changeSignal: Is considered for activating the self-changing light feature to transmit
signals for changing lighting.

Traffic Light The light changes its colour in response to the input signal. It will have an output
that shows the colour of the traffic light at the junction where it is positioned. Red stands for the
first level of light. It will be set up for the first time when a signal comes in. This signal has the
values 3, 4, and 5 as its values. (Red, Yellow, Green) Right away, the lights will be changed.

Conduct the Safety Analysis with ConcertoFLA Technique This system consists of two
components (light and controller components). We considered two light components and one
controller component in this case study.

Model the Component Architecture in Internal Block Diagram The traffic controller
document provides the specifications of the system, which are then modelled in CHESS, and
specifically in the internal block diagrams. A system’s internal block diagram has been shown
inside the CHESS tools.

Controller Block Diagram Figure 17 depicts an internal block diagram of a traffic light con-
troller. There are three inputs and five outputs on this controller. One of the inputs also serves
as an output. startSignal is considered as one of the input signals. The startSignal is responsible
for the system’s startup settings. The second input is the system’s startTrafficSignal for turning
on the traffic light system. The ChangeSignal is the last input. The controller will alter the traffic
lights whenever it receives a signal from ChangeSignal input.

Light Block Diagram Figure 18 It shows a block diagram of the internal parts of the traffic
system. This component has two inputs and one output. When the GoToNext signal is true,
the red light turns yellow. If the GoToNext signal is true again, the yellow light turns green.
statusLight is what comes out, and it shows what colour of the light is. The initial value, which
is the colour of the lights when they first turn on, comes from another input of component. The
initial value can be 3, 4, or 5;

Crossing Internal Block Diagram An internal block diagram of the Crossing represents the
system’s internal components. Its inputs are two traffic signals and a controller. The system output
consists of the lighting status as well as the initValue and start signal. Figure 19 illustrates how
each component is connected.

21

Ermia Hassanpour Derive Safety Properties for Formal Verification

Figure 17: Internal block diagram of Controller component

Figure 18: Internal block diagram of Traffic light component

Figure 19: Internal block diagram of Traffic light system

22

Ermia Hassanpour Derive Safety Properties for Formal Verification

Model the Component Architecture in Sequence Diagram In the previous steps, we
created all actors and their message servers. Unfortunately, the internal block diagram does not
indicate how these message servers will be called. We have therefore created a sequence diagram
to indicate the order in which the message servers will be called.

Inside the sequence diagram, it also illustrates the conditional statement of the traffic light. It
shows that when a Controller sends goToNext to the lights, a conditional logic is executed inside
the message server of goToNext. The sequence diagram in Figure 20 illustrates how this occurs.

FPTC Rules for Each Component In order to compose the FPTC rules, we first need to
understand the rationale behind them.

Controller FPTC rules The controller in this system is subject to the following failure scenar-
ios:

• The controller transmits the initial value to the lights several times if the system developer
sets the configuration multiple times. Therefore, the startSignal is active when it is not
supposed to be and the commission faults typically happen. As a result, the outputs become
active when they are not supposed to be. There is a commission caused by initlValueA and
initlValueB activation at the wrong time (Code 1 rule 1).

• startSignal follows the same pattern. startSignal has failure of Commission, and it means
supposed to when they are not intended to. This situation is shown in Code 1 rule 2.

Rule1 : s t a r t S i g n a l . commission , s t a r tT r a f f i c S i g n a l . noFa i lure −>
goToNextA . noFai lure , goToNextB . noFai lure ,
in itValueA . commission , in i tValueB . commission ;

Rule2 : s t a r t S i g n a l . noFai lure , s t a r tT r a f f i c S i g n a l . commission −>
goToNextA . commission , goToNextB . commission ,
in itValueA . noFai lure , in i tValueB . noFa i lure ;

Code 1: Controller FPTC rules

Light FPTC rules Light FPTC rules for the following scenario are presented in Code2.

• The traffic light component gets the goToNEXTSignal signal when it is not supposed to get.
This indicates a failure on an input (a commission). The traffic light component has the
incorrect colour at the wrong time, so it shows an incorrect colour to users/drivers. This
result is undetectable, indicating that its value is ValueSubtle (Code 2 Rule1).

• Similar to the last item, the initValue input becomes active unintentionally and causes the
output of the traffic light instruction. The output becomes incorrect from the beginning
(ValueCourse failure). Code 2 Rule 2 shows the Light FPTC rules for ValueCourse failure.

Rule1 : goToNextSignal . commission , i n i tVa lue . noFa i lure −> s t a tu sL igh t . va lueSubt l e ;
Rule2 : goToNextSignal . noFai lure , i n i tVa lue . commission −> s t a tu sL igh t . valueCoarse ;

Code 2: Light FPTC rules

6.1 Translate the FPTC Rules into Corresponding Safety Contracts

It is intended that all extracted FPTC rules be transferred to safety contracts for each component.
First FPTC rule defined for Controller, Code 1.Rule 1. Code 3 represents the safety contract
created from the FPTC rule Code 1.

23

Ermia Hassanpour Derive Safety Properties for Formal Verification

Figure 20: Sequence diagram of Traffic light system

24

Ermia Hassanpour Derive Safety Properties for Formal Verification

−
1 :
1 .A: not (s t a r t S i g n a l . commission)
1 .G: not ({ in i tValueA , in i tValueB } . commission)
2 :
2 .A: not (s t a r tT r a f f i c S i g n a l . commission)
2 .G: not ({ goToNextA , goToNextB } . commission)
−

Code 3: Generated safety contracts for Controller component

The same approach from Section 2.1.3 will apply to creating safety contracts from the FPTC
rule of Light component and the safety contract presented in Code 4.

−
1 :
1 .A: not (goToNextSignal . commission)
1 .G: not ({ s t a tu sL igh t } . va lueSubt l e)
2 :
2 .A: not (i n i tVa lue . commission)
2 .G: not ({ s t a tu sL igh t } . va lueCoarse)
−

Code 4: Light FPTC rules

To finalize the safety contracts for the whole system, four FPTC rules are used to generate four
safety contracts.

6.2 Mapping Internal Block Diagram to Rebeca

All the information was added to CHESS-FLA using the proposed mapper and the Rebeca code
was generated.

• First, we apply the Mapper Rule 1. Code 5.

main {
}

Code 5: Start point of mapper first step

• We use the Mapper Rule 2 for all of the blocks in the system. We have three components, and
we map them to three reactive classes (one Controller and two lights). The system consists
of two traffic lights and the Mapper Rule 2 map them to two reactive classes (Code 6).

r e a c t i v e c l a s s Light () {
}

r e a c t i v e c l a s s Con t r o l l e r () {
}

r e a c t i v e c l a s s Cross ing () {
}

main {
Light A() : () ;
Light B() : () ;
Con t r o l l e r c o n t r o l l e r () : () ;
Cross ing c r o s s i n g () : () ;

}

Code 6: Rebeca code of all blocks rule 2

• We have one system IBD in this case study (Crossing). When we map it to a reactiveclass,
the system blocks will have a constructor and a msgsrv as it is shown in Code 7

25

Ermia Hassanpour Derive Safety Properties for Formal Verification

r e a c t i v e c l a s s Cross ing () {
Cross ing () {

s e l f . s t a r t () ;
}

msgsrv s t a r t () {

}
}
main {

Cross ing c r o s s i n g () : () ;
}

Code 7: Crossing System block Rebeca code

• Rule 4 utilizes the available ports for each block and transmits them to a Rebeca code.
InitV alue and goToNextSignal are the inputs for the Light components with Integer and
Boolean types, respectively. StatusLight is the output of the component with an Integer
type. The ports in the Light component are mapped to an Statevar in the component’s
ReactiveClass. StartSignal, startTrafficSignal, and changeSignal are the inputs for
the Light component with a Boolean type. The Light component also has four outputs.
The outputs are GoToNextA, GoToNextB, and ChangeSignal with Bwoolean type, and
initV alueA and initV alueB with Integer type (Code 8).

r e a c t i v e c l a s s Light () {

s t a t e va r s {
boolean goToNextSignal ;
i n t i n i tVa lue ;
i n t s t a tu sL i gh t ;

}
}

r e a c t i v e c l a s s Con t r o l l e r () {

s t a t e va r s {
boolean s t a r t S i g n a l ;
boolean s t a r tT r a f f i c S i g n a l ;
i n t in itValueA ;
i n t in i tValueB ;
boolean goToNextA ;
boolean goToNextB ;

}
}

Code 8: Rebeca code for the Light and Controller components after applying the Rule 4.

• The connections are mapped to the Rebeca code. The goToNextA and the goToNextB con-
troller from the Controller component have connections. The initValueA and the initValueB
controllers also have connections. The connections are mapped to a Msgsrv Rebeca code
in the source and destination blocks by Mapper Rule 5. When we have the Controller as a
source, then the LightA and LightB are added as known objects of the Controller component.
We also include the names of the instances in the Rebeca main section, as it is shown in
Code 9.

r e a c t i v e c l a s s Light (3) {

knownrebecs {
Cross ing c r o s s i n g ;

}

s t a t e va r s {
boolean goToNextSignal ;
i n t i n i tVa lue ;
i n t s t a tu sL i gh t ;

26

Ermia Hassanpour Derive Safety Properties for Formal Verification

}

Light () {

}

msgsrv goToNext (boolean tempGoToNext) {
goToNextSignal = tempGoToNext ;

}

msgsrv i n i t i a t eVa l u e (i n t va lue) {
i n i tVa lue = value ;

}

msgsrv sendStatusLight () {
c r o s s i n g . sendStatusLight (id , s t a tu sL i gh t) ;

}
}

r e a c t i v e c l a s s Con t r o l l e r (6) {

knownrebecs {
Light l ightA ;
Light l i ghtB ;

}

s t a t e va r s {
boolean s t a r t S i g n a l ;
boolean s t a r tT r a f f i c S i g n a l ;
i n t in itValueA ;
i n t in i tValueB ;
boolean goToNextA ;
boolean goToNextB ;

}

Cont r o l l e r () {
}

msgsrv s t a r t (boolean tempStartS igna l) {
s t a r t S i g n a l = tempStartS igna l ;

}

msgsrv s t a r tT r a f f i c (boolean t empSta r tTra f f i cS i gna l) {
s t a r tT r a f f i c S i g n a l = tempSta r tTra f f i cS i gna l ;

}

msgsrv goToNextA () {
l i ghtA . goToNext (t rue) ;

}

msgsrv goToNextB () {
l i ghtB . goToNext (t rue) ;

}

msgsrv in i t i a t eVa lueA (i n t va lue) {
in i tValueA = value ;
l i ghtA . i n i t i a t eVa l u e (va lue) ;

}

msgsrv in i t i a t eVa lueB (i n t va lue) {
in i tValueB = value ;
l i ghtB . i n i t i a t eVa l u e (va lue) ;

}

msgsrv changeLight () {
s e l f . changeLight () a f t e r (5) ;

}
}

main {

27

Ermia Hassanpour Derive Safety Properties for Formal Verification

Light A(c r o s s i n g) : () ;
Light B(c r o s s i n g) : () ;

Con t r o l l e r c o n t r o l l e r (A,B) : () ;

Cross ing c r o s s i n g (c o n t r o l l e r) : () ;
}

Code 9: Rebeca code for the Light and Controller components when their connectors mapped

The final Rebeca code The codes generated by the mapper are combined. We apply logic to
Msgsrvs of the blocks. Additionally, the system must be in an operating mode in order to verify
the model, so we included start and will toggle start. This model represents information which
may be obtained from the traffic light component (Code 10).

r e a c t i v e c l a s s Light (3) {

knownrebecs {
Cross ing c r o s s i n g ;

}

s t a t e va r s {
boolean goToNextSignal ;
i n t i n i tVa lue ;
i n t s t a tu sL i gh t ;
i n t id ;

}

Light () {

}

msgsrv goToNext (boolean tempGoToNext) {
goToNextSignal = tempGoToNext ;

i f (s t a tu sL i gh t == 3) { // Red
s ta tu sL igh t = 5 ; // Green

} e l s e i f (s t a tu sL igh t == 4) { //
Yellow

s ta tu sL igh t = 3 ; // Red

} e l s e i f (s t a tu sL igh t == 5) { // Green
s ta tu sL igh t = 4 ; // Yellow

}
}

msgsrv i n i t i a t eVa l u e (i n t va lue) {
i n i tVa lue = value ;
id = value ;

}

msgsrv sendStatusLight () {
c r o s s i n g . sendStatusLight (id ,

s t a tu sL igh t) ;
}

}

r e a c t i v e c l a s s Con t r o l l e r (6) {

knownrebecs {
Light l ightA ;
Light l i ghtB ;

}

s t a t e va r s {
boolean s t a r t S i g n a l ;

boolean s t a r tT r a f f i c S i g n a l ;
i n t in itValueA ;
i n t in i tValueB ;
boolean goToNextA ;
boolean goToNextB ;

}

msgsrv s t a r t (boolean tempStartS igna l)
{

s t a r t S i g n a l = tempStartS igna l ;
s e l f . i n i t i a t eVa lueA (3) ;
s e l f . i n i t i a t eVa lueB (5) ;

}

msgsrv s t a r tT r a f f i c (
boolean t empSta r tTra f f i cS i gna l

)
{

s t a r tT r a f f i c S i g n a l =
tempSta r tTra f f i cS i gna l ;
s e l f . changeLight () ;

}

msgsrv goToNextA () {
l i ghtA . goToNext (t rue) ;

}

msgsrv goToNextB () {
l i ghtB . goToNext (t rue) ;

}

msgsrv in i t i a t eVa lueA (i n t va lue) {
l i ghtA . i n i t i a t eVa l u e (va lue) ;

}

msgsrv in i t i a t eVa lueB (i n t va lue) {
l i ghtB . i n i t i a t eVa l u e (va lue) ;

}

msgsrv changeLight () {
s e l f . goToNextA () ;
s e l f . goToNextB () ;
s e l f . changeLight () a f t e r (5) ;

}
}

r e a c t i v e c l a s s Cross ing (3) {

knownrebecs {
Cont r o l l e r c o n t r o l l e r ;

}

28

Ermia Hassanpour Derive Safety Properties for Formal Verification

s t a t e va r s {
boolean s t a r t S i g n a l ;
boolean s t a r tT r a f f i c S i g n a l ;
i n t statusLightA ;
i n t statusLightB ;

}

Cross ing () {
s e l f . s t a r t () a f t e r (5) ;
s e l f . s t a r t T r a f f i c () a f t e r (10) ;

}

msgsrv s t a r t () {
c o n t r o l l e r . s t a r t (t rue) ;

}

msgsrv s t a r tT r a f f i c () {
c o n t r o l l e r . s t a r tT r a f f i c (t rue) ;

}

msgsrv sendStatusLight (
i n t id , i n t va lue) {

i f (id == 0) {
statusLightA = value ;

} e l s e {
statusLightB = value ;

}
}

}

main {
Light A(c r o s s i n g) : () ;
Light B(c r o s s i n g) : () ;
Con t r o l l e r c o n t r o l l e r (A,B) : () ;
Cross ing c r o s s i n g (c o n t r o l l e r) : () ;

}

Code 10: Traffic light Rebeca model

6.3 Mapping the Safety Contracts to Rebeca Properties

All variables of Rebeca corresponding to the ports in internal block diagrams are used in the
Property file in Afra.

A : not(startSignal.commission)

A : not(startTrafficSignal.commission)

StartSignal and StartTrafficSignal are the inputs that make up the safety contrasts. Both of them
have a Boolean type. It is straightforward to define the statement mapping for two: monitor their
value and store it in a new variable to use in assertions.

Generated Rebeca code of Controller assumptions shown in Code 11

// Cont r o l l e r assumptions
s t a r t S i g n a l = c o n t r o l l e r . s t a r t S i g n a l ;
s t a r tT r a f f i c S i g n a l = c o n t r o l l e r . s t a r tT r a f f i c S i g n a l ;

//

Code 11: Definitions in the Property file of Afra for Controller

It is also true for the light component, which has two inputs, but one of them has the type of
integer. The value of that input is compared with the component’s normal behaviour to determine
its expected value, then it is compared with the expected value and saved to a variable to be
checked in the assertion process.

A : not(goToNextSignal.commission)

A : not(initV alue.commission)

Generated Rebeca code of Light assumptions shown in Code 12. This actor has two instances
we should check both of them.

// Light assumptions
// Green
AisGreen = A. in i tVa lue == 5 ;
BisGreen = B. in i tVa lue == 5 ;
// Yellow
AisYel low = A. in i tVa lue == 4 ;
BisYel low = B. in i tVa lue == 4 ;
// Red
AisRed = A. in i tVa lue == 3 ;
BisRed = B. in i tVa lue == 3 ;

AgoToNextSignal = A. goToNextSignal ;
BgoToNextSignal = B. goToNextSignal ;
//

Code 12: Definitions in the Property file of Afra for Light

29

Ermia Hassanpour Derive Safety Properties for Formal Verification

Two guarantee of Controller Component were added to properties file in Afra.

G : not(initV alueA, initV alueB.commission)

G : not(goToNextA, goToNextB.commission)

// Cont r o l l e r guarantee
// Green
isGreenA = c o n t r o l l e r . in itValueA == 5 ;
isGreenB = c o n t r o l l e r . in i tValueB == 5 ;
// Yellow
isYellowA = c o n t r o l l e r . in i tValueA == 4 ;
isYel lowB = c o n t r o l l e r . in i tValueB == 4 ;
// Red
isRedA = c o n t r o l l e r . in i tValueA == 3 ;
isRedB = c o n t r o l l e r . in i tValueB == 3 ;

goToNextSignalA = c o n t r o l l e r . goToNextA ;
goToNextSignalB = c o n t r o l l e r . goToNextB ;
//

Code 13: Definitions in the Property file of Afra for Controller

Two guarantee of Light Component were added to properties file in Afra.

G : not(statusLight.valueSubtle)

G : not(statusLight.valueCoarse)

// Light guarantee
// Green
AisGreenFinal = A. s ta tu sL i gh t == 5 ;
BisGreenFinal = B. s t a tu sL igh t == 5 ;
// Yellow
AisYel lowFinal = A. s ta tu sL i gh t == 4 ;
BisYe l lowFina l = B. s t a tu sL igh t == 4 ;
// Red
AisRedFinal = A. s ta tu sL igh t == 3 ;
BisRedFinal = B. s ta tu sL igh t == 3 ;
//

Code 14: Definitions in the Property file of Afra for Light

Safety properties The system cannot contain five states (Green, Green), (Yellow, Yellow),
(Red, Red), (Green, Yellow), (Yellow, Green), and (Yellow, Green) (the first element displays the
value of Light A, and the second element displays the value of Light B). Five safety properties
from system specification documents indicate that a crossing system accident is likely to occur. We
then extract the safety properties below directly from the specifications of the system. These are
all safety properties extracted from safety contracts and safety properties from safety documents.

property {

de f i n e {
// Green
AisGreen = A. in i tVa lue == 5 ;
BisGreen = B. in i tVa lue == 5 ;
// Yellow
AisYel low = A. in i tVa lue == 4 ;
BisYel low = B. in i tVa lue == 4 ;
// Red
AisRed = A. in i tVa lue == 3 ;
BisRed = B. in i tVa lue == 3 ;

AgoToNextSignal = A. goToNextSignal ;
BgoToNextSignal = B. goToNextSignal ;

AisGreenFinal = A. s ta tu sL i gh t == 5 ;

30

Ermia Hassanpour Derive Safety Properties for Formal Verification

BisGreenFinal = B. s t a tu sL igh t == 5 ;
// Yellow
AisYel lowFinal = A. s ta tu sL i gh t == 4 ;
BisYe l lowFina l = B. s t a tu sL igh t == 4 ;
// Red
AisRedFinal = A. s ta tu sL igh t == 3 ;
BisRedFinal = B. s ta tu sL igh t == 3 ;

s t a r t S i g n a l = c o n t r o l l e r . s t a r t S i g n a l ;
s t a r tT r a f f i c S i g n a l = c o n t r o l l e r . s t a r tT r a f f i c S i g n a l ;

isGreenA = c o n t r o l l e r . in itValueA == 5 ;
isGreenB = c o n t r o l l e r . in i tValueB == 5 ;
// Yellow
isYellowA = c o n t r o l l e r . in i tValueA == 4 ;
isYel lowB = c o n t r o l l e r . in i tValueB == 4 ;
// Red
isRedA = c o n t r o l l e r . in i tValueA == 3 ;
isRedB = c o n t r o l l e r . in i tValueB == 3 ;

goToNextSignalA = c o n t r o l l e r . goToNextA ;
goToNextSignalB = c o n t r o l l e r . goToNextB ;

}

Asse r t i on {
Asser t i on1 : ! (AisGreen && BisGreen) ;
Asse r t i on2 : ! (AisYellow && BisYel low) ;
Asse r t i on3 : ! (AisRed && BisRed) ;
Asse r t i on4 : ! (AisGreen && BisYel low) ;
Asse r t i on5 : ! (AisYellow && BisGreen) ;

Asse r t i on6 : ! (! s t a r t S i g n a l && AisGreen) ;
Asse r t i on7 : ! (! s t a r tT r a f f i c S i g n a l && AisGreen) ;
Asse r t i on8 : ! (! AgoToNextSignal && AisGreenFinal) ;
Asse r t i on9 : ! (! BgoToNextSignal && BisGreenFinal) ;

}
}

Code 15: Safety properties to be check in Rebeca

6.4 Model Checking via Afra tool

In this step, we run a model checker. Afra needs two files to be able to verify. We created the
Rebeca model in the section 6.2 and the properties file in the Afra section 6.3. After having these
two files, we used Afra to run model checking. Afra looks for a counter example to check if any
assertions failed. As shown in the Figure 21, all assertions are satisfied in this example.

Figure 21: Traffic light: Afra report after model checking.

Discussion This example demonstrates how we use CHESSML models to create Rebeca models,
and how we use ConcertoFLA results to create safety contracts, and then extract safety properties

31

Ermia Hassanpour Derive Safety Properties for Formal Verification

for model checking from safety contracts. Based on four safety contracts, we created four assertions.
For example, the safety contract states that we would not have output failures if the controller’s
signals trigger when they are not supposed to.

We model Commission failures on the controller’s input. The correct order is startSignal and
then startTrafficSignal. We trigger startSignal after startTrafficSignal again. Model checking shows
that this creates faulty outputs. In ConcertoFLA technique failures are characterized qualitatively.
However, formal verification enables us to identify the failures based on the specific value. We found
that if the startSignal is enabled for the second time before 25 units of time (the time needed for
startTrafficSignal to updates the values of the light), the controller outputs become faulty. Afra
generated a state space of the model, which is shown in Figure 22. According to the state space,
we need 25 units of time in order to start the system and the lights. When we call startSignal
earlier than 25 units of time twice, the incorrect state space is created, and the assertion below
fails-this assertion is derived from the safety contracts.

//
! (s t a r t S i g n a l && s t a r tT r a f f i c S i g n a l && goToNextA && initValueA)
//

Code 16: Assertion of Controller

The assertions we added in Afra help us to formally verify any new update in the model against
existing safety contracts.

32

Ermia Hassanpour Derive Safety Properties for Formal Verification

Figure 22: Traffic light: State space.

33

Ermia Hassanpour Derive Safety Properties for Formal Verification

7 Train Door Controller Case Study

There are doors on all trains that allow passengers to enter and exit. A train’s door must be locked
before it can move. The system which controls the train’s door is capable of locking the door and
then instructing it to begin moving. It is not possible for the system to guarantee that the door
will never become unlocked while the train is in move. This is because we do not know when the
door gets locked and the train starts moving as a result of software commands [36].

System specification The primary architectural components are Input-Output (IO) units, the
central Train Control Unit (TCU), and the Door Control Unit (DCU). IO units serve as system
interfaces and are designed to receive/transmit input/output signals. The IO unit on the passen-
ger side is responsible for reading the door push buttons in order to accept the passenger’s open
request. When a passenger presses the ”open” button, the IO unit receives and transmits the
open request to the DCU. The driver’s orders for open, close, lock, and unlock are sent via the
TCU to the DCU. The DCU is responsible for executing the correct orders to alter the door’s
status. TCU is responsible for central control management. TCU may be dispersed and executed
on distinct physical devices. For instance, one physical control device for non-safety-related op-
erations and another device for safety-critical tasks. DCU may be a programmable device that
receives the command signal from TCU and transmits it to the matching door actuator converters.
Typically, data transmission between physical devices is facilitated by a system-wide bus and a
secure communication protocol. Later in our behavioural models, we represent both DCU and
the corresponding IO on the passenger side as ”Door” actors, as well as TCU and the driver as
”Controller” components. ”Train” represents a series of IO units receiving status from sensors and
other methods that are used to alert the TCU and the driver that the train has arrived at the
station and is prepared to depart, which is crucial for our case study. These are the states in which
the TCU must alter the door status.

Conduct the Safety Analysis with ConcertoFLA Technique This system consists of four
components (Door, Passenger, Train and Controller components). We fallow the approach used in
thesis [32].

Model the Component Architecture in Internal Block Diagram The Internal Block
diagrams have been created inside the CHESS tools. This system is composed of four blocks. The
system block has the same name as the system. This system has passengers, doors, controllers,
and train components. Each component has different block diagrams.

Passenger Block Diagram Based on the Internal block diagram shown in Figure 23, Passenger
component has one output. It is the output that is responsible for requesting the door to be opened.
The output name is openSignal, and it has the type of Boolean.

Figure 23: Passenger block diagram

Door Block Diagram The door component gets an open request from the passenger and trans-
fer it to the controller. The door component responds to requests from the controller by locking or
unlocking, opening or closing itself. A ”Lock door” means no one can send an open request until
someone unlocks it (Door IBD, shown in Figure 24).

34

Ermia Hassanpour Derive Safety Properties for Formal Verification

Figure 24: Door block diagram

Controller Block Diagram As shown in Figure 25, the controller block diagram has five inputs
and two outputs. Aside from the three inputs from the door controller, two additional inputs are
received from train components. This component has been assigned a Boolean type for all ports.
There are two outputs from this system, both of which are directed to the door component with
the same types of inputs.

Figure 25: Controller block diagram

Train Block Diagram The train component consists of two outputs, each of which has a
Boolean type output. Additionally, this component has a port which has a type of InOut, and
with a Boolean type (Train IBD shown in Figure 26).

Model the Component Architecture in Sequence Diagram In the previous steps, we
created all actors and their message servers. Unfortunately, the internal block diagram does not
indicate how these message servers will be called. We have therefore created a sequence diagram
to indicate the order in which the message servers will be called. In Figure 27 we created the
Sequence diagram of the system to model the behaviour of the Train.

35

Ermia Hassanpour Derive Safety Properties for Formal Verification

Figure 26: Train block diagram

FPTC Rules for Each Component In order to compose the FPTC rules, we first need to
understand the rationale behind them.

• Assume that the train approaches or leaves the station at an incorrect time, resulting in
omissions that cause incorrect output behaviour. The Code 17 contains FPTC rules for the
Controller component.

−
Rule1 : requestOpenSignal . noFai lure , isOpen . noFai lure , i sLock . noFai lure ,

l e a v eS t a t i onS i gna l . omiss ion , approachStat ionS igna l . noFa i lure −>
openSignal . noFai lure , l o c kS i gna l . omiss ion ;

Rule2 : requestOpenSignal . noFai lure , isOpen . noFai lure , i sLock . noFai lure ,
l e a v eS t a t i onS i gna l . noFai lure , approachStat ionS igna l . omiss ion −>
openSignal . omiss ion , l o c kS i gna l . noFa i lure ;

−

Code 17: FPTC rules of Controller

• There is a pair of faulty behaviours in the door component. In the event that either of these
behaviours occurs when they should not, it will affect outputs. The Code18 contains FPTC
rules of component.

−
Rule1 : passengerOpenSignal . noFai lure , l o c kS i gna l . omiss ion , openSignal .

noFai lure , requestOpenSignal . noFa i lure −>isOpen . noFai lure , i sLock .
omiss ion ;

Rule2 : passengerOpenSignal . noFai lure , l o c kS i gna l . noFai lure , openSignal .
omiss ion , requestOpenSignal . noFa i lure −>isOpen . omiss ion , i sLock .
noFa i lure ;

−

Code 18: FPTC rules of Door

7.1 Translate the FPTC rules into corresponding safety contracts

It is intended that all extracted FPTC rules be transferred to safety contracts for each component.
The first FPTC rule applies to Controller, Code 17.Rule 1, and the input has Omission failure.
According to Section 2.1.3, the first safety contract created base on this input. It is possible to
guarantee that our output omission will not be excessive if we ensure that we do not have failure
on input. The safety contract for this component shown in Code 19. Code 19 represents the next
safety contract created from the FPTC rule Code 17.Rule 2.

−
1 :

36

Ermia Hassanpour Derive Safety Properties for Formal Verification

Figure 27: Sequence diagram of Traffic light system

37

Ermia Hassanpour Derive Safety Properties for Formal Verification

1 .A: not (l e av eS t a t i onS i gna l . omiss ion)
1 .G: not (l o ckS i gna l . omiss ion)
2 :
2 .A: not (approachStat ionS igna l . omiss ion)
2 .G: not (openSignal . omiss ion)
−

Code 19: Generated safety contracts for Controller component

The same approach from Section 2.1.3 will apply to creating safety contracts from the FPTC
rule of Door component and the safety contract written Code 20.

−
1 :
1 .A: not (l o ckS i gna l . omiss ion)
1 .G: not (i sLock . omiss ion)
2 :
2 .A: not (openSignal . omiss ion)
2 .G: not (isOpen . omiss ion)
−

Code 20: Door component safety contracts

7.2 Mapping Internal Block Diagram to Rebeca

All the information was added to CHESS-FLA using the proposed mapper and the Rebeca code
was generated.

• In the first stage, we implemented Mapper Rule 1. Code 21.

main {
}

Code 21: Start point of mapper first step

• Using Mapper Rule 2, all blocks in this system are migrated to Rebeca. This system includes
four components. Three new reactive classes and one controller instance were added to the
code. Also, an instance of them added to main part.

r e a c t i v e c l a s s Passenger () {
}

r e a c t i v e c l a s s Train () {
}

r e a c t i v e c l a s s Door () {
}

r e a c t i v e c l a s s Con t r o l l e r () {
}

main {
Passenger passenger () : () ;

Train t r a i n () : () ;

Door door () : () ;

Con t r o l l e r c o n t r o l l e r () : () ;
}

Code 22: Rebeca code of all blocks rule 2

• There is only one system of IBD in this case study, which is System. However, when we map
it to reactiveclass, system blocks will have a constructor and a msgsrv will be executed
within them. As it shows in Code 23.

38

Ermia Hassanpour Derive Safety Properties for Formal Verification

r e a c t i v e c l a s s System () {
System () {

s e l f . s t a r t () ;
}

msgsrv s t a r t () {

}
}
main {

System system () : () ;
}

Code 23: System System block Rebeca code

• This step involves mapping all ports to the Rebeca Code. These are ports for each component.

– The Passenger component has an output signal of openSignal with the Boolean type;
the mapped Rebeca code is an statevar.

– The train component also has two output ports, which are both boolean types. leaveStationSignal
and approchStationSignal are the outputs that go to Controller. Also, this component
has a InOut port which has the type of boolean and named toggledTrainSignal.

– The Controller component contains five inputs and two outputs. Aside from the three
inputs from the door controller, two additional inputs are received from train com-
ponents. All ports in this component have been assigned a boolean type. There are
two outputs from this system, both of which are directed to the door component with
the same types of inputs; all these ports are converted to statevar in Rebeca, The in-
put ports name are requestOpenSignal, leaveStationSignal, approchStationSignal,
isOpen and isLock and the outputs are openSignal and lockSignal.

– The door component has three inputs and three outputs which all have the same type
of Boolean. The inputs are passengerOpenSignal, lockSignal, openSignal, and the
outputs are requestOpenSignal, isLock, and isOpen with the type of Boolean.

r e a c t i v e c l a s s Passenger () {
s t a t e va r s {

boolean openSignal ;
}

}

r e a c t i v e c l a s s Train () {
s t a t e va r s {

boolean l e av eS t a t i onS i gna l ;
boolean approachStat ionS igna l ;

}
}

r e a c t i v e c l a s s Door () {
s t a t e va r s {

boolean passengerOpenSignal ;
boolean l o ckS i gna l ;
boolean openSignal ;
boolean requestOpenSignal ;

boolean isOpen ;
boolean i sLock ;

}

}

r e a c t i v e c l a s s Con t r o l l e r () {
s t a t e va r s {

boolean l o ckS i gna l ;
boolean openSignal ;

39

Ermia Hassanpour Derive Safety Properties for Formal Verification

boolean isOpen ;
boolean i sLock ;
boolean l e av eS t a t i onS i gna l ;
boolean approachStat ionS igna l ;

}
}

Code 24: Ports mapped to Rebeca model

• This time, we will map each connection to Rebeca. In this system, there are multiple con-
nections. We used Rule 4 of mapper and mapped all of them to Rebeca, and you can find
your generated Msgsrv in Code.

r e a c t i v e c l a s s Passenger (2) {
knownrebecs {

Door door ;
}

s t a t e va r s {
boolean openSignal ;

}

Passenger () {
s e l f . open () ;

}

msgsrv open () {
door . open () ;

}
}

r e a c t i v e c l a s s Train (4) {
knownrebecs {

Cont r o l l e r c o n t r o l l e r ;
}

s t a t e va r s {
boolean l e av eS t a t i onS i gna l ;
boolean approachStat ionS igna l ;

}

Train () {
s e l f . t ogg l eTra in () ;

}

msgsrv l e av eS ta t i on () {
l e a v eS t a t i onS i gna l = true ;
c o n t r o l l e r . l e av eS ta t i on (t rue) ;

}

msgsrv approachStat ion () {
approachStat ionS igna l = true ;
c o n t r o l l e r . approachStat ion (t rue) ;

}

msgsrv togg l eTra in () {
s e l f . l e av eS ta t i on () ;
s e l f . approachStat ion () a f t e r (DELAY) ;
s e l f . t ogg l eTra in () a f t e r (15) ;

}
}

r e a c t i v e c l a s s Door (8) {
knownrebecs {

Cont r o l l e r c o n t r o l l e r ;
System system ;

}

s t a t e va r s {

40

Ermia Hassanpour Derive Safety Properties for Formal Verification

boolean passengerOpenSignal ;
boolean l o ckS i gna l ;
boolean openSignal ;
boolean requestOpenSignal ;

boolean isOpen ;
boolean i sLock ;

}

msgsrv open () {
openSignal = true ;
isOpen = true ;
requestOpenSignal = true ;
c o n t r o l l e r . requestOpen () a f t e r (DELAY) ;

}

msgsrv lock (boolean s i g n a l) {
l o c kS i gna l = s i g n a l ;
i sLock = s i g n a l ;

}

msgsrv feedbackOpen () {
system . feedbackOpen (isOpen) ;
c o n t r o l l e r . feedbackOpen (isOpen) ;

}

msgsrv feedbackLock () {
system . feedbackLock (i sLock) ;
c o n t r o l l e r . feedbackLock (i sLock) ;

}
}

r e a c t i v e c l a s s Con t r o l l e r (9) {
knownrebecs {

Door door ;
}

s t a t e va r s {
boolean l o ckS i gna l ;
boolean openSignal ;
boolean isOpen ;
boolean i sLock ;
boolean l e av eS t a t i onS i gna l ;
boolean approachStat ionS igna l ;

}

Cont r o l l e r () {
i sLock = f a l s e ;
isOpen = f a l s e ;
// l e av eS t a t i onS i gna l = true ;

}

msgsrv l e av eS ta t i on (boolean s i g n a l) {
i f (s i g n a l) {

s e l f . c l o s e () ;
s e l f . l o ck () ;
s e l f . l e av eS ta t i on (f a l s e) ;

} e l s e {
l e a v eS t a t i onS i gna l = true ;

}
}

msgsrv approachStat ion (boolean s i g n a l) {
approachStat ionS igna l = s i g n a l ;
s e l f . unlock () ;
s e l f . open () ;

}

msgsrv open () {

41

Ermia Hassanpour Derive Safety Properties for Formal Verification

door . open (t rue) ;
isOpen = true ;

}

msgsrv c l o s e () {
door . open (f a l s e) ;
isOpen = f a l s e ;

}

msgsrv lock () {
door . l o ck (t rue) ;
i sLock = true ;

}

msgsrv unlock () {
door . l o ck (f a l s e) ;
i sLock = f a l s e ;

}

msgsrv feedbackOpen (boolean value) {
isOpen = value ;

}

msgsrv feedbackLock (boolean value) {
i sLock = value ;

}

msgsrv requestOpen () {

}
}

Code 25: Map connections to Rebeca model

Final Rebeca code By combining all the codes generated by the mapper with additional Con-
certoFLA data, we will also provide additional functional logic to certain blocks (/(Msgsrvs/) as
internal block diagrams are lacking information. .

env byte DELAY = 10 ;

r e a c t i v e c l a s s Passenger (2) {
knownrebecs {

Door door ;
}

s t a t e va r s {
boolean openSignal ;

}

Passenger () {
s e l f . open () ;

}

msgsrv open () {
door . open () ;

}
}

r e a c t i v e c l a s s Train (4) {
knownrebecs {

Cont r o l l e r c o n t r o l l e r ;
}

s t a t e va r s {
boolean l e av eS t a t i onS i gna l ;
boolean approachStat ionS igna l ;

}

Train () {
s e l f . t ogg l eTra in () ;

}

msgsrv l e av eS ta t i on () {
l e a v eS t a t i onS i gna l = true ;
c o n t r o l l e r . l e av eS ta t i on (t rue) ;

}

msgsrv approachStat ion () {
approachStat ionS igna l = true ;
c o n t r o l l e r . approachStat ion (t rue) ;

}

msgsrv togg l eTra in () {
s e l f . l e av eS ta t i on () ;
s e l f . approachStat ion () a f t e r (DELAY)

;
s e l f . t ogg l eTra in () a f t e r (15) ;

}
}

r e a c t i v e c l a s s Door (8) {
knownrebecs {

Cont r o l l e r c o n t r o l l e r ;
System system ;

}

s t a t e va r s {
boolean passengerOpenSignal ;

42

Ermia Hassanpour Derive Safety Properties for Formal Verification

boolean l o ckS i gna l ;
boolean openSignal ;
boolean requestOpenSignal ;

boolean isOpen ;
boolean i sLock ;

}

msgsrv open () {
openSignal = true ;
isOpen = true ;
requestOpenSignal = true ;

}

msgsrv c l o s e () {
openSignal = f a l s e ;
isOpen = f a l s e ;
requestOpenSignal = f a l s e ;

}

msgsrv lock (boolean s i g n a l) {
l o c kS i gna l = s i g n a l ;
i sLock = s i g n a l ;

}

msgsrv feedbackOpen () {
system . feedbackOpen (isOpen) ;
c o n t r o l l e r . feedbackOpen (isOpen) ;

}

msgsrv feedbackLock () {
system . feedbackLock (i sLock) ;
c o n t r o l l e r . feedbackLock (i sLock) ;

}
}

r e a c t i v e c l a s s Con t r o l l e r (9) {
knownrebecs {

Door door ;
}

s t a t e va r s {
boolean l o ckS i gna l ;
boolean openSignal ;
boolean isOpen ;
boolean i sLock ;
boolean l e av eS t a t i onS i gna l ;
boolean approachStat ionS igna l ;

}

Cont r o l l e r () {
i sLock = f a l s e ;
isOpen = f a l s e ;

}

msgsrv l e av eS ta t i on (boolean s i g n a l) {
i f (s i g n a l) {

s e l f . c l o s e () ;
s e l f . l o ck () ;
s e l f . l e av eS ta t i on (f a l s e) ;

} e l s e {
l e a v eS t a t i onS i gna l = true ;

}
}

msgsrv approachStat ion (boolean s i g n a l)
{

approachStat ionS igna l = s i g n a l ;
s e l f . unlock () ;
s e l f . open () ;

}

msgsrv open () {
door . open () ;
isOpen = true ;

}

msgsrv c l o s e () {
door . c l o s e () ;
isOpen = f a l s e ;

}

msgsrv lock () {
door . l o ck (t rue) ;
i sLock = true ;

}

msgsrv unlock () {
door . l o ck (f a l s e) ;
i sLock = f a l s e ;

}

msgsrv feedbackOpen (boolean value) {
isOpen = value ;

}

msgsrv feedbackLock (boolean value) {
i sLock = value ;

}

msgsrv requestOpen () {

}
}

r e a c t i v e c l a s s System (2) {
knownrebecs {

Train t r a i n ;
}

s t a t e va r s {
boolean isOpen ;
boolean i sLock ;

}

System () {
s e l f . s t a r t () ;

}

msgsrv s t a r t () {
t r a i n . togg l eTra in () ;

}

msgsrv feedbackOpen (boolean value) {
isOpen = value ;

}

msgsrv feedbackLock (boolean value) {
i sLock = value ;

}
}

main {
System system (t r a i n) : () ;

Passenger passenger (door) : () ;

Train t r a i n (c o n t r o l l e r) : () ;

Door door (c on t r o l l e r , system) : () ;

43

Ermia Hassanpour Derive Safety Properties for Formal Verification

Cont r o l l e r c o n t r o l l e r (door) : () ;
}

Code 26: Train door Rebeca code

7.3 Mapping the Safety Contracts to Rebeca Properties

There are some safety properties derived from safety requirements, such as the train door should
not be opened when it is locked, and the train should not leave the station if the door is open
and not locked. However, we used our method to derive more safety properties from the safety
contracts of each component. In the first step, safety contract assumptions have been added to
Afra’s properties. Two assumptions of Controller Component were added to properties file in Afra.

In order to debug the model, the safety analysis results are now being used. The controller and
door components have four safety contracts. Now we examine them and if the verification fails,
we should update the design and repeat our approach, which is beyond the scope of this thesis.

A : not(leaveStationSignal.omission)

A : not(approachStationSignal.omission)

leaveStationSignal and approachStationSignal are the inputs that make up the safety contrasts.
Both of them have a Boolean type. It is straightforward to define the statement mapping for two:
monitor their value and store it in a new variable for assertions.

Generated Rebeca code of Controller assumptions shown in Code 27

// Cont r o l l e r assumptions
l e av eS t a t i onS i gna l = c o n t r o l l e r . l e a v eS t a t i onS i gna l ;
approachStat ionS igna l = c o n t r o l l e r . approachStat ionS igna l ;

//

Code 27: Definitions in the Property file of Afra for Controller

It is also true for the door component, which has two inputs with type of Boolean. The value
of that input is compared with the component’s normal behaviour to determine its expected value,
then it is compared with the expected value and saved to a variable to be checked in the assertion
process.

A : not(lockSignal.omission)

A : not(openSignal.omission)

Generated Rebeca code of Door’s assumptions, shown in Code 28. This actor has two instances,
we should check both of them.

// Door assumptions
i sLock = door . l o c kS i gna l ;
isOpen = door . openSignal ;
//

Code 28: Definitions in the Property file of Afra for Door

The same approach used for inputs is also applied to outputs. Two guarantee of Controller
Component were added to properties file in Afra.

G : not(lockSignal.omission)

G : not(openSignal.omission)

// Cont r o l l e r guarantee
l o ckS i gna l = c o n t r o l l e r . l o c kS i gna l ;
openSignal = c o n t r o l l e r . openSignal ;

//

Code 29: Definitions in the Property file of Afra for Controller

44

Ermia Hassanpour Derive Safety Properties for Formal Verification

G : not(isLock.omission)

G : not(isOpen.omission)

Generated Rebeca code of Door’s guarantee shown in Code 30. This actor has two instances
we should check both of them.

// Door guarantee
isLockDoor = door . i sLock ;
isOpenDoor = door . isOpen ;
//

Code 30: Definitions in the Property file of Afra for Door

Final Safety properties These are all safety properties extracted from safety contracts and
safety properties from safety documents.

property {

de f i n e {
l e a v eS t a t i onS i gna l = c o n t r o l l e r . l e a v eS t a t i onS i gna l ;

approachStat ionS igna l = c o n t r o l l e r . approachStat ionS igna l ;
i sLock = door . l o c kS i gna l ;
isOpen = door . openSignal ;
l o c kS i gna l = c o n t r o l l e r . l o c kS i gna l ;

openSignal = c o n t r o l l e r . openSignal ;
isLockDoor = door . i sLock ;

isOpenDoor = door . isOpen ;
}

Asse r t i on {
Asser t i on1 : ! (! l e a v eS t a t i onS i gna l && lo ckS i gna l) ;
Asse r t i on2 : ! (! approachStat ionS igna l && openSignal) ;
Asse r t i on3 : ! (! i sLock && isLockDoor) ;
Asse r t i on4 : ! (! isOpen && isOpenDoor) ;

}
}

Code 31: Safety properties to be check in Rebeca

Model Checking via Afra tool In this step, we run a model checker. Afra needs two files to be
able to verify. We created the Rebeca model in the section 7.2 and the properties file in the Afra
section 7.3. After having these two files, we used Afra to run model checking. Afra looks for a
counter example to check if any assertions failed. As shown in Figure 28, all assertions are satisfied
in this example.

Figure 28: Afra’s report after model checking.

Discussion This example demonstrates how we use CHESSML models to create Rebeca models,
and how we use ConcertoFLA results to create safety contracts, and then extract safety properties
for model checking from safety contracts. Based on four safety contracts, we created four assertions.
The assertions we added in Afra help us to formally verify any new update in the model against
existing safety contracts.

45

Ermia Hassanpour Derive Safety Properties for Formal Verification

8 Discussion and Future Work

In general, writing the properties of a model is one of the most difficult tasks in model checking.
Moreover, safety properties for model checking are formulated in temporal logic and it is not easy for
safety experts to specify properties in temporal logic. Extraction of properties for model checking
from safety contracts, provide us with a systematic way for formulating properties. Safety contracts
give us component-based properties. We derive the safety properties in a (semi-)automatic way
and they are formulated in a structured manner. As a result of using safety contracts to derive
safety properties, we know what type of failure to model check. To the best of our knowledge, this
is the first work on defining safety properties for Rebeca models in a systematic, structured, and
semi-automatic way.

As part of the method we present in this thesis, an expert uses ConcertoFLA to analyse the
modeled system and uses the results to create safety contracts. When the industry uses CHESS
to run safety analyses, CHESSML diagrams are created.

In CHESSML, Internal Block Diagrams (IBDs) model the system’s structures. ConcertoFLA
is applied to IBDs for failure transformation and propagation analysis. This thesis introduces a
method to map Internal Block Diagrams of CHESSML to Rebeca code. IBDs do not capture the
behavior of the system. The behavioral models include sequence diagrams. We apply a method to
map sequence diagrams to Rebeca codes. Model checking is then conducted using the generated
Rebeca codes. We formally verify the model against the safety properties derived from safety
contracts to identify potential hazards.

After modeling the system in Rebeca modeling language and adding safety properties, we
demonstrate how to debug the model. We can track how assertions fail using the counter example
provided by the model checking tool, Afra. The assertions we created enabled us to verify new
model updates formally. We can use assertions to verify them against the new model.

One of the challenges in using formal verification for industry is the gap between their safety
requirements on one hand and the models and properties on the other hand. Our thesis helps in
decrease this gap.

8.1 Responses to the Research Question

Using the steps described in Section 5, we are able to extract safety properties from safety contracts
and use them in Afra to model check Rebeca models. We also proposed a method for mapping
CHESSML behavioral models (Internal block diagrams) to Rebeca model in order to improve the
process. The mapper transforms Internal block diagrams to Rebeca models.

RQ : How to derive safety properties from qualitative failure logic analysis (FLA) results and use
them for formal verification? More specifically, how to derive safety properties from safety
contracts and use them as properties for model checking Rebeca models?

Answer: Our research question focuses on determining the safety properties of safety con-
tracts—the safety contracts generated from ConcertoFLA analysis results. We use safety
contracts to derive safety properties in order to address this research question. There are
assumptions and guarantees in all safety contracts. Afra’s properties file contains statements
that represent assumptions and guarantees. We created an assertion for each safety contract.
The component-based ConcertoFLA technique helps in deriving the safety properties for
model checking. Our thesis presents approaches that enable us to extract safety properties
from individual components.

Additionally, the results can be used as evidence in the industry’s safety assessment, allowing
the industry to improve the design and create a strong design at an early stage.

8.2 Future Work

We can foresee the following ways to enhance the thesis. Future work can be undertaken in order
to extend this thesis as listed below.

46

Ermia Hassanpour Derive Safety Properties for Formal Verification

• In this thesis, the main objective is to derive safety properties from safety contracts. In the
future, however, it will be important to extend this thesis on how to derive security properties
from safety-security analysis, including our mappers, and how to extend mapper approaches
to extract security properties from safety-security analysis.

• This work introduces two mappings: safety contracts to safety properties and internal block
diagrams to Rebeca modeling languages. In order to run these approaches in CHESS and
Afra tools, they will need to be code-based. Through this implementation, we will be able to
automate our approach and enable industries to bridge safety analysis and formal verification.

• We tried to extract FPTC rules and create diagrams in CHESS; however, we can use them to
add other diagrams and define security requirements in CHESS. Although we attempted to
extract FPTC rules and create diagrams in CHESS, we can use them to add other diagrams
and define security requirements. Furthermore, CHESS is capable of running dependability
analyses and constructing fault trees. In future work, we can try to extract more information
to use in Afra, like fault trees.

This thesis has paved the way for further research in connecting safety analysis approaches to
Rebeca modeling language and formal verification techniques. This thesis provides the basis for
new research and can contribute to academia and industry through the use of the results and
process.

47

Ermia Hassanpour Derive Safety Properties for Formal Verification

References

[1] J. F. Nunamaker Jr, M. Chen, and T. D. Purdin, “Systems development in information
systems research,” Journal of management information systems, vol. 7, no. 3, pp. 89–106,
1990.

[2] “Iec 61508-1:2010, functional safety of electrical/electronic/programmable electronic safety-
related systems,” http://web.archive.org/web/20080207010024/http://www.808multimedia.
com/winnt/kernel.htm, accessed: 2010-09-30.

[3] C. Paulsen and R. Byers, “Glossary of key information security terms,” Tech. Rep., Jul.
2019. [Online]. Available: https://doi.org/10.6028/nist.ir.7298r3

[4] O. Hasan and S. Tahar, “Formal verification methods,” in Encyclopedia of Information Science
and Technology, Third Edition. IGI Global, 2015, pp. 7162–7170.

[5] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977). ieee, 1977, pp. 46–57.

[6] [Online]. Available: https://rebeca-lang.org/alltools/Afra

[7] [Online]. Available: http://rebeca-lang.org/Rebeca

[8] M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer, “Modeling and verification of reactive
systems using rebeca,” Fundam. Informaticae, vol. 63, no. 4, pp. 385–410, 2004. [Online].
Available: http://content.iospress.com/articles/fundamenta-informaticae/fi63-4-05

[9] M. Sirjani, “Rebeca: Theory, applications, and tools,” in International Symposium on Formal
Methods for Components and Objects. Springer, 2006, pp. 102–126.

[10] P. M. Alday, M. Schlesewsky, and I. Bornkessel-Schlesewsky, “Towards a computational model
of actor-based language comprehension,” Neuroinformatics, vol. 12, no. 1, pp. 143–179, 2014.

[11] B. Gallina, Z. Haider, and A. Carlsson, “Towards generating ecss-compliant fault tree analysis
results via concertofla,” in IOP Conference Series: Materials Science and Engineering, vol.
351, no. 1. IOP Publishing, 2018, p. 012001.

[12] B. Gallina and Z. Haider, “Making safeconcert security-informed to enable multi-concern
modelling,” in 30th European Safety and Reliability Conference ESREL-2020, 1 Nov 2020,
Venice, Italy. Research Publishing Services, 2020.

[13] L. Montecchi and B. Gallina, “Safeconcert: A metamodel for a concerted safety modeling of
socio-technical systems,” in International Symposium on Model-Based Safety and Assessment.
Springer, 2017, pp. 129–144.

[14] I. Šljivo, B. Gallina, J. Carlson, H. Hansson, and S. Puri, “A method to generate reusable
safety case argument-fragments from compositional safety analysis,” Journal of Systems and
Software, vol. 131, pp. 570–590, 2017.

[15] V. Djukanovic, “Mapping uml diagrams to the reactive object language (rebeca),” 2019.

[16] D. C. Schmidt, “Model-driven engineering,” Computer-IEEE Computer Society-, vol. 39, no. 2,
p. 25, 2006.

[17] J. Hutchinson, M. Rouncefield, and J. Whittle, “Model-driven engineering practices in indus-
try,” in Proceedings of the 33rd International Conference on Software Engineering, 2011, pp.
633–642.

[18] M. Chaudron, S. Larsson, and I. Crnkovic, “Component-based development process and com-
ponent lifecycle,” Journal of Computing and Information Technology, vol. 13, no. 4, pp. 321–
327, 2005.

48

http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
https://doi.org/10.6028/nist.ir.7298r3
https://rebeca-lang.org/alltools/Afra
http://rebeca-lang.org/Rebeca
http://content.iospress.com/articles/fundamenta-informaticae/fi63-4-05

Ermia Hassanpour Derive Safety Properties for Formal Verification

[19] T. Stolte, G. Bagschik, A. Reschka, and M. Maurer, “Hazard analysis and risk assessment for
an automated unmanned protective vehicle,” in 2017 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2017, pp. 1848–1855.

[20] M. R. Chaudron, W. Heijstek, and A. Nugroho, “How effective is uml modeling?” Software
& Systems Modeling, vol. 11, no. 4, pp. 571–580, 2012.

[21] S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML: the systems modeling
language. Morgan Kaufmann, 2014.

[22] M. Hause et al., “The sysml modelling language,” in Fifteenth European Systems Engineering
Conference, vol. 9, 2006, pp. 1–12.

[23] L. Bressan, A. L. de Oliveira, L. Montecchi, and B. Gallina, “A systematic process for ap-
plying the chess methodology in the creation of certifiable evidence,” in 2018 14th European
Dependable Computing Conference (EDCC). IEEE, 2018, pp. 49–56.

[24] S. Mazzini, J. M. Favaro, S. Puri, and L. Baracchi, “Chess: an open source methodology and
toolset for the development of critical systems.” in EduSymp/OSS4MDE@ MoDELS, 2016,
pp. 59–66.

[25] B. Gallina, M. A. Javed, F. U. Muram, and S. Punnekkat, “A model-driven dependability
analysis method for component-based architectures,” in 2012 38th Euromicro Conference on
Software Engineering and Advanced Applications. IEEE, 2012, pp. 233–240.

[26] R. F. Paige, L. M. Rose, X. Ge, D. S. Kolovos, and P. J. Brooke, “Fptc: automated safety anal-
ysis for domain-specific languages,” in International Conference on Model Driven Engineering
Languages and Systems. Springer, 2008, pp. 229–242.

[27] I. Sljivo, B. Gallina, J. Carlson, and H. Hansson, “Strong and weak contract formalism for
third-party component reuse,” in 2013 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). IEEE, 2013, pp. 359–364.

[28] J. A. McDermid, M. Nicholson, D. J. Pumfrey, and P. Fenelon, “Experience with the applica-
tion of hazop to computer-based systems,” in COMPASS’95 Proceedings of the Tenth Annual
Conference on Computer Assurance Systems Integrity, Software Safety and Process Security’.
IEEE, 1995, pp. 37–48.

[29] E. Khamespanah, P. Mrvaljevic, A. Fattouh, and M. Sirjani, “Using afra in different domains
by tool orchestration,” in Composing Model-Based Analysis Tools. Springer, 2021, pp. 283–
299.

[30] M. Sirjani, L. Provenzano, S. A. Asadollah, M. H. Moghadam, and M. Saadatmand, “To-
wards a verification-driven iterative development of software for safety-critical cyber-physical
systems,” Journal of Internet Services and Applications, vol. 12, no. 1, pp. 1–29, 2021.

[31] B. Gallina, L. Montecchi, A. L. de Oliveira, and L. Bressan, “Multiconcern, dependability-
centered assurance via a qualitative and quantitative coanalysis,” IEEE Software, vol. 39,
no. 4, pp. 39–47, 2022.

[32] I. Sljivo, “Assurance aware contract-based design for safety-critical systems,” Ph.D. disserta-
tion, Mälardalen University, 2018.

[33] A. Cimatti, M. Dorigatti, and S. Tonetta, “Ocra: A tool for checking the refinement of tem-
poral contracts,” in 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2013, pp. 702–705.

[34] S. F. Alavizaedh, A. H. Nekoo et al., “Reuml: A uml profile for modeling and verification
of reactive systems,” in International Conference on Software Engineering Advances (ICSEA
2007). IEEE, 2007, pp. 50–50.

49

Ermia Hassanpour Derive Safety Properties for Formal Verification

[35] A. Cicchetti, F. Ciccozzi, S. Mazzini, S. Puri, M. Panunzio, A. Zovi, and T. Vardanega, “Chess:
a model-driven engineering tool environment for aiding the development of complex industrial
systems,” in Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering, 2012, pp. 362–365.

[36] M. Sirjani, E. A. Lee, and E. Khamespanah, “Model checking software in cyberphysical sys-
tems,” in 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMP-
SAC). IEEE, 2020, pp. 1017–1026.

50

